Publications
Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels
Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours - such as spin or valley - that the electrons can undergo and the excitation spectrum of the broken symmetry states that they form. These properties cannot be probed directly with electrical transport measurements.
Magnetotropic susceptibility
The magnetotropic susceptibility is the thermodynamic coefficient associated with the rotational anisotropy of the free energy in an external magnetic field and is closely related to the magnetic susceptibility. It emerges naturally in frequency-shift measurements of oscillating mechanical cantilevers, which are becoming an increasingly important tool in the quantitative study of the thermodynamics of modern condensed-matter systems.
New perspectives on student reasoning about measurement uncertainty: More or better data
Uncertainty is an important and fundamental concept in physics education. Students are often first exposed to uncertainty in introductory labs, expand their knowledge across lab courses, and then are introduced to quantum mechanical uncertainty in upper-division courses. This study is part of a larger project evaluating student thinking about uncertainty across these contexts.
Subsystem symmetry, spin-glass order, and criticality from random measurements in a two-dimensional Bacon-Shor circuit
Symmetry-enforced Fermi degeneracy in topological semimetal
Thermodynamic evidence of fractional Chern insulator in moiré MoTe2
Detection of a pair density wave state in UTe2
Spin-triplet topological superconductors should exhibit many unprecedented electronic properties, including fractionalized electronic states relevant to quantum information processing. Although UTe2 may embody such bulk topological superconductivity1–11, its superconductive order parameter Δ(k) remains unknown12. Many diverse forms for Δ(k) are physically possible12 in such heavy fermion materials13.
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum mechanics1. For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged2,3. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions4–8. Hence, it can change the observables of the system without violating the principle of indistinguishability.
Strain stiffening elastomers with swelling inclusions
Inhomogeneously swollen elastomers are an emergent class of materials, comprising elastic matrices with inclusion phases in the form of microgel particles or osmolytes. Inclusion phases can undergo osmotically driven swelling and deswelling over orders of magnitude. In the swollen state, the inclusions typically have negligible Young's modulus, and the matrix is strongly deformed. In that regime, the effective mechanical properties of the composite are governed by the matrix.
Quantum Oscillations in Graphene Using Surface Acoustic Wave Resonators
Surface acoustic waves (SAWs) provide a contactless method for measuring wave-vector-dependent conductivity. This technique has been used to discover emergent length scales in the fractional quantum Hall regime of traditional, semiconductor-based heterostructures. SAWs would appear to be an ideal match for van der Waals heterostructures, but the right combination of substrate and experimental geometry to allow access to the quantum transport regime has not yet been found.