In the News
Full listing
March 21, 2023
A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.
The group’s paper, “Gate-Tunable Heavy Fermions in a Moiré Kondo Lattice,” published March 15 in Nature. The lead author is postdoctoral fellow Wenjin Zhao in the Kavli Institute at Cornell.
The project was led by Kin Fai Mak, professor of physics in the College of Arts and Sciences, and Jie Shan, professor of applied and engineering physics in Cornell Engineering and in A&S, the paper’s co-senior authors. Both researchers are members of the Kavli Institute; they came to Cornell through the provost’s Nanoscale Science and Microsystems Engineering (NEXT Nano) initiative.
March 17, 2023
As a freshman, Dan Ralph was inspired by an engaging physics teacher who Ralph considered a Yoda-like character who was very good at posing problems that helped them understand what they were learning.
Dan Ralph as co-director of Kavli Institute at Cornell (KIC) states "We're constantly looking for new puzzles, new problems, and new areas of research that people haven't considered before. Some involve fundamental science questions while others are more about engineering, but they are all areas where research can make a difference."
March 9, 2023
A physics theory that’s proven useful to predict the crowd behavior of molecules and fruit flies also seems to work in a very different context – a basketball court.
A model based on density functional theory can suggest the best positioning for each player on the basketball court in a given scenario if they want to raise their probability of either scoring or defending successfully.
Boris Barron, a doctoral student in physics working with Tomás Arias, professor in the Department of Physics, in the College of Arts and Sciences, presented his work on March 9 at the American Physical Society conference in Las Vegas.