Skip to main content


Ultrafast manipulation of mirror domain walls in a charge density wave

Alfred Zong
Xiaozhe Shen
Anshul Kogar
Linda Ye
Carolyn Marks
Debanjan Chowdhury
Timm Rohwer
Byron Freelon
Stephen Weathersby
Renkai Li
Jie Yang
Joseph Checkelsky
Xijie Wang
Nuh Gedik

Topological defects, potential information carriers, were written into and erased from a solid with femtosecond light pulses. , Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations.

Science Advances
Date Published

Nanocalorimetry using microscopic optical wireless integrated circuits

C.L. Smart
A.J. Cortese
B.J. Ramshaw
P.L. McEuen

We present in situ calorimetry, thermal conductivity, and thermal diffusivity measurements of materials using temperature-sensing optical wireless integrated circuits (OWiCs). These microscopic and untethered optical sensors eliminate input wires and reduce parasitic effects. Each OWiC has a mass of ∼100 ng, a 100-μm-scale footprint, and a thermal response time of microseconds. We demonstrate that they can measure the thermal properties of nearly any material, from aerogels to metals, on samples as small as 100 ng and over thermal diffusivities covering four orders of magnitude.

Proceedings of the National Academy of Sciences of the United States of America
Date Published