Skip to main content

Erich Mueller


Ultracold atomic gases, quantum optics, strongly correlated matter, and exotic quantum phenomena.


I study the theory of atoms cooled to nK temperatures. At these temperatures, the classical image of atoms as small billiard balls must be replaced by a quantum mechanical picture of wave-packets.  Although I am focused on basic science questions, this research may impact applications in quantum computing, precision measurement, and navigation.

I am particularly interested in how simple inter-atomic interactions lead to complex collective behavior.  I am driven by a belief that studying these atomic systems can help refine our understanding of fundamental physics.

Much of my recent efforts have been dedicated to finding ways of taking important physics from other fields (solid state physics, nuclear physics, and high energy physics) and asking how one can design cold atom experiments to elucidate the phenomena.

My group works closely with a number of experimentalists, both at Cornell and elsewhere.  We use an eclectic blend of analytic and numerical techniques.

Awards and Honors

  • Fellow, American Physical Society, 2015
  • Robert A. and Donna B. Paul Award for Excellence in Advising, 2013
  • Alfred P. Sloan Fellow, 2005-2007

Educational Background

  • Director, Laboratory of Atomic and Solid State Physics, Cornell University, 2015-2021, 2022-2023
  • Professor, Physics, Cornell University, 2015-Present
  • Associate Professor, Physics, Cornell University, 2009-2015
  • Assistant Professor, Physics, Cornell University, 2003-2009
  • Postdoctoral Fellow, Physics, The Ohio State University, 2001-2003
  • Ph.D. in Physics, University of Illinois Urbana-Champaign, 2001
  • B.Sc. in Mathematics/Physics, University of British Columbia, 1996