Skip to main content

Xiaomeng Liu

Assistant Professor

Our research group explores emergent quantum phenomena arising from the collective motion of electrons in quantum materials. We specialize in the study of 2D materials and van der Waals (vdW) heterostructures, which are created by mechanically stacking multiple layers of 2D materials. This approach enables the creation of new material architectures, opening up limitless possibilities for tailoring quantum properties.

To investigate these quantum materials, we utilize low-temperature electrical transport measurements and scanning tunneling microscopy (STM). In particular, we have a strong emphasis on innovative applications of STM on 2D materials and devices, allowing us to examine electron behaviors down to the atomic level. We are also passionate about building quantum devices that showcase the fascinating properties of 2D materials and heterostructures.


We are interested in topics include unconventional superconductivity, exciton condensation, frustrated magnetism, strongly correlated electron orders, and fractional topological states.

Our current directions include:

  • Engineer quantum states of matter in vdW heterostructures. We stack 2D materials in new configurations and exploit the interplay between separate atomic layers (such as interlayer Coulomb coupling and moiré patterns) to create novel correlated and topological phases.
  • Local probe of 2D quantum materials. We conduct STM experiments on vdW heterostructures to uncover hidden quantum properties (e.g. fractional charges and statistics) and deciphering enigmatic quantum states of matter (e.g. the nature of unconventional superconductivity). One powerful measurement technique we use is spectroscopic imaging, which allows us to visualize the electron wavefunction at the atomic scale. Moreover, we are developing innovative methods to access other essential information, such as local magnetic and thermodynamic properties, by combining STM with elaborately designed 2D devices.
  • Devices and applications. We develop mechanical, electronic, and coherent devices (such as exciton Josephson junctions) derived from 2D materials that has potential applications for quantum technologies.

We are seeking graduate students and postdocs with an interest in quantum materials to join our team.

Awards and Honors

  • The Lee Osheroff Richardson (LOR) Science Prize, Oxford Instruments, 2023
  • Princeton Materials Science Postdoctoral Fellowship, Princeton Center for Complex Materials, 2019

Educational Background

  • Assistant Professor, Physics, Cornell University, 2023-present
  • PCCM Postdoctoral Fellow, Princeton University, 2019-2023
  • Ph.D. in Physics, Harvard University, 2019
  • M.S. in Applied Physics, Columbia University, 2013
  • B.A. in Physics, Peking University, 2012