Publications
Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures
Recent technological advances have introduced diverse engineered nanoparticles (ENPs) into our air, water, medicine, cosmetics, clothing, and food. However, the health and environmental effects of these increasingly common ENPs are still not well understood. In particular, potential neurological effects are one of the most poorly understood areas of nanoparticle toxicology (nanotoxicology), in that low-to-moderate neurotoxicity can be subtle and difficult to measure.
Tunable spin-polarized correlated states in twisted double bilayer graphene
Reducing the energy bandwidth of electrons in a lattice below the long-range Coulomb interaction energy promotes correlation effects. Moiré superlattices—which are created by stacking van der Waals heterostructures with a controlled twist angle1,2,3—enable the engineering of electron band structure. Exotic quantum phases can emerge in an engineered moiré flat band.
Non-Landau quantum phase transitions and nearly-marginal non-Fermi liquid
Non-Fermi liquid and unconventional quantum critical points (QCP) with strong fractionalization are two exceptional phenomena beyond the classic condensed matter doctrines, both of which could occur in strongly interacting quantum many-body systems. This work demonstrates that using a controlled method one can construct a non-Fermi liquid within a considerable energy window based on the unique physics of unconventional QCPs.
A proposal for reconciling diverse experiments on the superconducting state in Sr2RuO4
A variety of precise experiments have been carried out to establish the character of the superconducting state in Sr2RuO4. Many of these appear to imply contradictory conclusions concerning the symmetries of this state. Here we propose that these results can be reconciled if we assume that there is a near-degeneracy between a dx2−y2 (B1g in group theory nomenclature) and a gxy(x2−y2) (A2g) superconducting state.
Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity
The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC).
Examination of quantitative methods for analyzing data from concept inventories
Physics education research (PER) has long used concept inventories to investigate student learning over time and to compare performance across various student subpopulations. PER has traditionally used normalized gain to explore these questions but has begun to use established methods from other fields, including Cohen's d, multiple linear regression, and linear mixed effects models. The choice of analysis method for examining student learning gains in PER is a current subject of debate.
Author Correction: Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene (Nature Communications, (2020), 11, 1, (2941), 10.1038/s41467-020-16844-y)
An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s).
High dynamic range CdTe mixed-mode pixel array detector (MM-PAD) for kilohertz imaging of hard x-rays
A hard x-ray, high-speed, high dynamic range scientific x-ray imager is described. The imager is based on the mixed-mode pixel array detector (MM-PAD) readout chip coupled to a 750 μm thick cadmium telluride (CdTe) sensor. The full imager is a 2 × 3 tiled array of MM-PAD sensor/readout chip hybrids. CdTe improves detection for high energy x-rays as compared to silicon sensors, enabling efficient x-ray imaging to extend to >100 keV . The detector is capable of 1 kHz imaging and in-pixel circuitry has been designed to allow for well depths of greater than 4 × 106 80 keV x-rays.
Deconfined metallic quantum criticality: A U(2) gauge-theoretic approach
We discuss a new class of quantum phase transitions - deconfined Mott transition (DMT) - that describe a continuous transition between a Fermi liquid metal with a generic electronic Fermi surface and an electrical insulator without Fermi surfaces of emergent neutral excitations. We construct a unified U(2) gauge theory to describe a variety of metallic and insulating phases, which include Fermi liquids, fractionalized Fermi liquids (FL∗), conventional insulators, and quantum spin liquids, as well as the quantum phase transitions between them.
Spin–orbit torque field-effect transistor (SOTFET): Proposal for a magnetoelectric memory
Spin-based memories are attractive for their non-volatility and high durability but provide modest resistance changes, whereas semiconductor logic transistors are capable of providing large resistance changes, but lack memory function with high durability. The recent availability of multiferroic materials provides an opportunity to directly couple the change in spin states of a magnetic memory to a charge change in a semiconductor transistor.