Publications
The Role of Buckling Instabilities in the Global and Local Mechanical Response in Porous Collagen Scaffolds
Background: Porous polymer scaffolds are commonly used for regenerative medicine and tissue-engineered therapies in the repair and regeneration of structural tissues which require sufficient mechanical integrity to resist loading prior to tissue ingrowth. Objective: Investigate the connection between scaffold architecture and mechanical response of collagen scaffolds used in human tissue-engineered cartilage. Methods: We performed multi-scale mechanical analysis on two types of porous collagen scaffolds with honeycomb and sponge architectures.
Vortex Fermi Liquid and Strongly Correlated Quantum Bad Metal
The semiclassical description of two-dimensional (2d) metals based on the quasiparticle picture suggests that there is a universal threshold of the resistivity: the resistivity of a 2d metal is bounded by the so called Mott-Ioffe-Regal (MIR) limit, which is at the order of h/e2. If a system remains metallic while its resistivity is beyond the MIR limit, it is referred to as a "bad metal", which challenges our theoretical understanding as the very notion of quasiparticles is invalidated.
What influences students' abilities to critically evaluate scientific investigations?
Critical thinking is the process by which people make decisions about what to trust and what to do. Many undergraduate courses, such as those in biology and physics, include critical thinking as an important learning goal. Assessing critical thinking, however, is non-trivial, with mixed recommendations for how to assess critical thinking as part of instruction. Here we evaluate the efficacy of assessment questions to probe students' critical thinking skills in the context of biology and physics.
Heuristic bounds on superconductivity and how to exceed them
What limits the value of the superconducting transition temperature (Tc) is a question of great fundamental and practical importance. Various heuristic upper bounds on Tc have been proposed, expressed as fractions of the Fermi temperature, TF, the zero-temperature superfluid stiffness, ρs(0), or a characteristic Debye frequency, ω0. We show that while these bounds are physically motivated and are certainly useful in many relevant situations, none of them serve as a fundamental bound on Tc.
Anisotropic Gigahertz Antiferromagnetic Resonances of the Easy-Axis van der Waals Antiferromagnet CrSBr
We report measurements of antiferromagnetic resonances in the van der Waals easy-axis antiferromagnet CrSBr. The interlayer exchange field and magnetocrystalline anisotropy fields are comparable to laboratory magnetic fields, allowing a rich variety of gigahertz-frequency dynamical modes to be accessed. By mapping the resonance frequencies as a function of the magnitude and angle of applied magnetic field, we identify the different regimes of antiferromagnetic dynamics.
The effect of surface-active statistical copolymers in low-energy miniemulsion and RAFT polymerization
Low-energy miniemulsions enable the production of uniform nanodroplets for a wide range of applications without the need for using specialized equipment. However, low-energy miniemulsions are typically formed in the presence of a surface-active agent with a specific structure and property.
Engineered dissipation for quantum information science
Quantum information processing relies on the precise control of non-classical states in the presence of many uncontrolled environmental degrees of freedom. The interactions between the relevant degrees of freedom and the environment are often viewed as detrimental, as they dissipate energy and decohere quantum states. Nonetheless, when controlled, dissipation is an essential tool for manipulating quantum information: dissipation engineering enables quantum measurement, quantum-state preparation and quantum-state stabilization.
Programming interactions in magnetic handshake materials
The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect of programmable assembly. Recent developments in DNA nanotechnology and colloidal particle synthesis have significantly advanced our ability to create particle sets with programmable interactions, based on DNA or shape complementarity. The increasing miniaturization underlying magnetic storage offers a new path for engineering programmable components for self assembly, by printing magnetic dipole patterns on substrates using nanotechnology.
Conversion Between 3 He Melting Curve Scales Below 100 mK
We provide the conversion parameters to allow a 3He melting curve thermometer to be used to calibrate secondary thermometers to the PLTS2000 temperature scale (Rusby et al. in J Low Temp Phys 149(3):156, 2007). Additional fits to the phase diagram of superfluid 3He are also provided using the melting curve P, T measurements and of the phase diagram of superfluid 3He (Greywall in Phys Rev B 33(11):7520, https://doi.org/10.1103/PhysRevB.33.7520, 1986) as a bridge.