Publications
Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors
Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer selfassembly- directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas.
Integrating hybrid area detectors for storage ring and free-electron laser applications
Hybrid pixel array detectors (HPADs) have a major impact on the science performed at x-ray synchrotron radiation sources. Broadly speaking, HPADs are of either the photon-counting or integrating variety. The success of photoncounting HPADs at storage rings is well described in the contribution by Brönnimann and Trüb.
Introduction to the Variational and Diffusion Monte Carlo Methods
We provide a pedagogical introduction to the two main variants of real-space quantum Monte Carlo methods for electronic structure calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate wave function, discussing details important for applications to electronic systems.
Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy
Electrochemical generation of oxygen via the oxygen evolution reaction (OER) is a key enabling step for many air-breathing electrochemical energy storage devices. IrO2 (Ir4+: 5d5) ranks among the most active known OER catalysts. However, it is unclear how the environment of the Ir4+ oxygen-coordination octahedra affects the OER electrocatalysis. Herein, we present the OER kinetics on a single-crystal, epitaxial SrIrO3(100)p perovskite oxide synthesized using molecular-beam epitaxy on a DyScO3(110) substrate.
Protein crystal structure from non-oriented, single-axis sparse X-ray data
X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse.
Relating microstructure and particle-level stress in colloidal crystals under increased confinement
The mechanical properties of crystalline materials can be substantially modified under confinement. Such modified macroscopic properties are usually governed by the altered microstructures and internal stress fields. Here, we use a parallel plate geometry to apply a quasi-static squeeze flow crushing a colloidal polycrystal while simultaneously imaging it with confocal microscopy. The confocal images are used to quantify the local structure order and, in conjunction with Stress Assessment from Local Structural Anisotropy (SALSA), determine the stress at the single-particle scale.
Stability of a Bose-Einstein condensate in a driven optical lattice: Crossover between weak and tight transverse confinement
We explore the effect of transverse confinement on the stability of a Bose-Einstein condensate loaded in a shaken one-dimensional or two-dimensional square lattice. We calculate the decay rate from two-particle collisions. We predict that if the transverse confinement exceeds a critical value, then, for appropriate shaking frequencies, the condensate is stable against scattering into transverse directions. We explore the confinement dependence of the loss rate, explaining the rich structure in terms of resonances. © 2015 American Physical Society.
Traveling surface spin-wave resonance spectroscopy using surface acoustic waves
Coherent gigahertz-frequency surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, via the magnetoelastic interaction, resonantly excite traveling surface spin waves in an adjacent thin-film ferromagnet. These excited surface spin waves, traveling with a definite in-plane wave-vector q∥ enforced by the SAW, can be detected by measuring changes in the electro-acoustical transmission of a SAW delay line.
Visualization, coarsening, and flow dynamics of focal conic domains in simulated smectic- A liquid crystals
Smectic liquid crystals vividly illustrate the subtle interplay of broken translational and orientational symmetries, by exhibiting defect structures forming geometrically perfect confocal ellipses and hyperbolas. Here, we develop and numerically implement an effective theory to study the dynamics of focal conic domains in smectic-A liquid crystals. We use the information about the smectic's structure and energy density provided by our simulations to develop several novel visualization tools for the focal conics.
T7 replisome directly overcomes DNA damage
Cells and viruses possess several known 'restart' pathways to overcome lesions during DNA replication. However, these 'bypass' pathways leave a gap in replicated DNA or require recruitment of accessory proteins, resulting in significant delays to fork movement or even cell division arrest. Using single-molecule and ensemble methods, we demonstrate that the bacteriophage T7 replisome is able to directly replicate through a leading-strand cyclobutane pyrimidine dimer (CPD) lesion.