Publications
In vitro modeling of early mammalian embryogenesis
Synthetic embryology endeavors to use stem cells to recapitulate the first steps of mammalian development that define the body axes and first stages of fate assignment. Well-engineered synthetic systems provide an unparalleled assay to disentangle and quantify the contributions of individual tissues as well as the molecular components driving embryogenesis. Experiments using a mixture of mouse embryonic and extraembryonic stem cell lines show a surprising degree of self-organization akin to certain milestones in the development of intact mouse embryos.
Reflection and Time Reversal Symmetry Enriched Topological Phases of Matter: Path Integrals, Non-orientable Manifolds, and Anomalies
We study symmetry-enriched topological (SET) phases in 2+1 space-time dimensions with spatial reflection and/or time-reversal symmetries. We provide a systematic construction of a wide class of reflection and time-reversal SET phases in terms of a topological path integral defined on general space-time manifolds. An important distinguishing feature of different topological phases with reflection and/or time-reversal symmetry is the value of the path integral on non-orientable space-time manifolds.
Stress decomposition in LAOS of dense colloidal suspensions
We present a method for stress decomposition to understand the rich interactions present in the large amplitude oscillatory shear (LAOS) of shear-thickening suspensions. This method is rooted in experiments, does not rely on a preexisting rheological model, and is free of any a priori symmetry arguments. The decomposition allows us to extract the hydrodynamic, contact, and Brownian contributions to map out how these stresses evolve over an oscillation cycle.
Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians
A large collaboration carefully benchmarks 20 first-principles many-body electronic structure methods on a test set of seven transition metal atoms and their ions and monoxides. Good agreement is attained between three systematically converged methods, resulting in experiment-free reference values. These reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-electron problem. The most accurate methods obtain energies indistinguishable from experimental results, with the agreement mainly limited by the experimental uncertainties.
Strange Metal in Magic-Angle Graphene with near Planckian Dissipation
Recent experiments on magic-angle twisted bilayer graphene have discovered correlated insulating behavior and superconductivity at a fractional filling of an isolated narrow band. Here we show that magic-angle bilayer graphene exhibits another hallmark of strongly correlated systems - a broad regime of T-linear resistivity above a small density-dependent crossover temperature - for a range of fillings near the correlated insulator.
Developing scientific decision making by structuring and supporting student agency
Scientific expertise is manifested through extensive cycles of making and acting on decisions. To learn the processes and practices of science, therefore, students must have practice with scientific decision making. We argue that this can only happen if students are afforded agency: the opportunity to make decisions to pursue a goal. In this study, we compared two different introductory physics labs through the lens of structuring and supporting student agency.
Direct measurement of the impact of teaching experimentation in physics labs
While there have been many calls to improve the quality of instructional physics labs, there exists little research on the effectiveness of lab instruction. This study provides a direct comparison between labs that have goals to reinforce physics content to those that emphasize experimentation skills. In this controlled study, all students attended the same lecture and discussion sections, had the same homework and exams, but attended labs that had one of two aims: teaching experimentation or reinforcing content.
Enhanced surface superconductivity in Ba(Fe0.95Co0.05)2As2
We present direct evidence for an enhanced superconducting Tc on the surface of cleaved single crystals of Ba(Fe 0.95 Co 0.05)2As2. Transport measurements performed on samples cleaved in ultra-high vacuum show a significantly enhanced superconducting transition when compared to equivalent measurements performed in air. Deviations from the bulk resistivity appear at 21 K, well above the 10 K bulk Tc of the underdoped compound.
Author Correction: Thermodynamic Signatures of Weyl Fermions in NbP (Scientific Reports, (2019), 9, 1, (2095), 10.1038/s41598-018-38161-7)
The Acknowledgements section in this Article is incomplete. “The authors wish to thank A. Shekhter for useful discussions. B.J.R. acknowledges funding from LANL LDRD 20160616ECR ‘New States of Matter in Weyl Semimetals’, from the DOE-BES ‘Science of 100 Tesla’ program, and from the National Science Foundation under Grant No. 1752784. Work at Los Alamos National Laboratory was supported by the LDRD Program. T.M. is funded by Deutsche Forschungsgemeinschaft through GRK 1621, SFB 1143, and the Emmy-Noether program ME 4844/1. P.J.M.
Energy‐Efficient Ultrafast SOT‐MRAMs Based on Low‐Resistivity Spin Hall Metal Au <sub>0.25</sub> Pt <sub>0.75</sub>
Many key electronic technologies (e.g., large-scale computing, machine learning, and superconducting electronics) require new memories that are at the same time fast, reliable, energy-efficient, and of low-impedance, which has remained a challenge. Nonvolatile magnetoresistive random access memories (MRAMs) driven by spin–orbit torques (SOTs) have promise to be faster and more energy-efficient than conventional semiconductor and spin-transfer-torque magnetic memories.