Publications
Mechanical properties of growing melanocytic nevi and the progression to melanoma
Melanocytic nevi are benign proliferations that sometimes turn into malignant melanoma in a way that is still unclear from the biochemical and genetic point of view. Diagnostic and prognostic tools are then mostly based on dermoscopic examination and morphological analysis of histological tissues. To investigate the role of mechanics and geometry in the morpholgical dynamics of melanocytic nevi, we study a computation model for cell proliferation in a layered non-linear elastic tissue.
Evaluation of mode dependent fluid damping in a high frequency drumhead microresonator
Design of high quality factor (Q) micromechanical resonators depends critically on our understanding of energy losses in their oscillations. The Q of such structures depends on process induced prestress in the structural geometry, interaction with the external environment, and the encapsulation method. We study the dominant fluid interaction related losses, namely, the squeeze film damping and acoustic radiation losses in a drumhead microresonator subjected to different prestress levels, operated in air, to predict its Q in various modes of oscillation.
Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice
Recent neutron scattering experiments on the spin-1/2 kagome lattice antiferromagnet ZnCu 3 (OH) 6 Cl 2 (Herbertsmithite) provide the first evidence of fractionalized excitations in a quantum spin liquid state in two spatial dimensions. In contrast to existing theoretical models of both gapped and gapless spin liquids, which give rise to sharp dispersing features in the dynamic structure factor, the measured dynamic structure factor reveals an excitation continuum that is remarkably flat as a function of frequency.
Biaxial shear of confined colloidal hard spheres: The structure and rheology of the vorticity-aligned string phase
Using a novel biaxial confocal rheoscope, we investigate the flow of the shear induced vorticity aligned string phase [X. Cheng et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 109, 63], which has a highly anisotropic microstructure. Using biaxial shear protocols we show that we have excellent control of the string phase anisotropic morphology. We choose a shear protocol that drives the system into the string phase. Subsequently, a biaxial force measurement device is used to determine the suspension rheology along both the flow and vorticity directions.
Super-resolution microscopy reveals decondensed chromatin structure at transcription sites
Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin.
Spectroscopic accuracy directly from quantum chemistry: Application to ground and excited states of beryllium dimer
We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of De = 931.2 cm-1 which agrees very well with recent experimentally derived estimates De = 929.7±2 cm-1 [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and De= 934.6 cm-1 [K. Patkowski, V.
Dissipation signatures of the normal and superfluid phases in torsion pendulum experiments with He 3 in aerogel
We present data for the energy dissipation factor Q-1 over a broad temperature range at various pressures of a torsion pendulum setup used to study He3 confined in a 98% open silica aerogel. Values for Q-1 above Tc are temperature independent and have weak pressure dependence. Below Tc, a deliberate axial compression of the aerogel by 10% widens the range of metastability for a superfluid equal spin pairing (ESP) state; we observe this ESP phase on cooling and the B phase on warming over an extended temperature region.
Electronic structure of a quasi-freestanding MoS2 monolayer
Several transition-metal dichalcogenides exhibit a striking crossover from indirect to direct band gap semiconductors as they are thinned down to a single monolayer. Here, we demonstrate how an electronic structure characteristic of the isolated monolayer can be created at the surface of a bulk MoS2 crystal. This is achieved by intercalating potassium in the interlayer van der Waals gap, expanding its size while simultaneously doping electrons into the conduction band.
Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte
A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell.
A multi-axis confocal rheoscope for studying shear flow of structured fluids
We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure.