Skip to main content

Publications

Acoustic properties of amorphous silica between 1 and 500mK

Cornell Affiliated Author(s)
Author
A.D. Fefferman
R.O. Pohl
A.T. Zehnder
J.M. Parpia
Abstract

We have made reliable measurements of the sound velocity δv/v0 and internal friction Q-1 in vitreous silica at 1.03, 3.74, and 14.0 kHz between 1mK and 0.5K. In contrast with earlier studies that did not span as wide a temperature and frequency range, our measurements of Q-1 reveal a crossover (as T decreases) only near 10mK from the T3 dependence predicted by the standard tunneling model to a T dependence predicted if interactions are accounted for.

Journal
Physical Review Letters
Date Published
Group (Lab)
Jeevak Parpia Group

Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules

Cornell Affiliated Author(s)
Author
Julien Toulouse
C. Umrigar
Abstract

We pursue the development and application of the recently introduced linear optimization method for determining the optimal linear and nonlinear parameters of Jastrow-Slater wave functions in a variational Monte Carlo framework. In this approach, the optimal parameters are found iteratively by diagonalizing the Hamiltonian matrix in the space spanned by the wave function and its first-order derivatives, making use of a strong zero-variance principle.

Journal
Journal of Chemical Physics
Date Published
Funding Source
EAR-0530813
DE-FG02-07ER46365
0530301
Group (Lab)
Cyrus Umrigar Group

Imaging mechanical vibrations in suspended graphene sheets

Cornell Affiliated Author(s)
Author
D. Garcia-Sanchez
A.M. Van Der Zande
A. San Paulo
B. Lassagne
P.L. McEuen
A. Bachtold
Abstract

We carried out measurements on nanoelectromechanical systems based on multilayer graphene sheets suspended over trenches in silicon oxide. The motion of the suspended sheets was electrostatically driven at resonance using applied radio frequency voltages. The mechanical vibrations were detected using a novel form of scanning probe microscopy, which allowed identification and spatial imaging of the shape of the mechanical eigenmodes.

Journal
Nano Letters
Date Published
Group (Lab)
Paul McEuen Group

Grain boundary energies and cohesive strength as a function of geometry

Cornell Affiliated Author(s)
Author
V.R. Coffman
J.P. Sethna
Abstract

Cohesive laws are stress-strain curves used in finite element calculations to describe the debonding of interfaces such as grain boundaries. It would be convenient to describe grain boundary cohesive laws as a function of the parameters needed to describe the grain boundary geometry; two parameters in two dimensions and five parameters in three dimensions. However, we find that the cohesive law is not a smooth function of these parameters. In fact, it is discontinuous at geometries for which the two grains have repeat distances that are rational with respect to one another.

Journal
Physical Review B - Condensed Matter and Materials Physics
Date Published
Funding Source
0085969
0218475
Group (Lab)
James Sethna Group

Fixed-node diffusion Monte Carlo study of the structures of m -benzyne

Cornell Affiliated Author(s)
Author
W. Al-Saidi
C. Umrigar
Abstract

Diffusion Monte Carlo (DMC) calculations are performed on the monocyclic and bicyclic forms of m -benzyne, which are the equilibrium structures at the CCSD(T) and CCSD levels of coupled cluster theory. We employed multiconfiguration self-consistent field trial wave functions which are constructed from a carefully selected eight-electrons-in-eight-orbitals complete active space [CAS(8,8)], with configuration state function coefficients that are reoptimized in the presence of a Jastrow factor.

Journal
Journal of Chemical Physics
Date Published
Funding Source
EAR-0530813
DE-FG02-07ER46365
0530301
Group (Lab)
Cyrus Umrigar Group

Contact-mediated cell-assisted cell proliferation in a model eukaryotic single-cell organism: An explanation for the lag phase in shaken cell culture

Cornell Affiliated Author(s)
Author
Carl Franck
W. Ip
Albert Bae
N. Franck
E. Bogart
T.T. Le
Abstract

In cell culture, when cells are inoculated into fresh media, there can be a period of slow (or lag phase) growth followed by a transition to exponential growth. This period of slow growth is usually attributed to the cells' adaptation to a new environment. However, we argue that, based on observations of shaken suspension culture of Dictyostelium discoideum, a model single-cell eukaryote, this transition is due to a density effect.

Journal
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Date Published
Research Area
Group (Lab)
Carl Franck Group

Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules

Cornell Affiliated Author(s)
Author
S. Forth
C. Deufel
M.Y. Sheinin
B. Daniels
J.P. Sethna
M.D. Wang
Abstract

The response of single DNA molecules to externally applied forces and torques was directly measured using an angular optical trap. Upon overwinding, DNA buckled abruptly as revealed by a sharp extension drop followed by a torque plateau. When the DNA was held at the buckling transition, its extension hopped rapidly between two distinct states. Furthermore, the initial plectonemic loop absorbed approximately twice as much extension as was absorbed into the plectoneme upon each additional turn.

Journal
Physical Review Letters
Date Published
Research Area
Group (Lab)
James Sethna Group
Michelle Wang Group

Non-abelian statistics in the interference noise of the Moore-Read quantum Hall state

Cornell Affiliated Author(s)
Author
E. Ardonne
Eun-Ah Kim
Abstract

We propose noise oscillation measurements in a double point contact, accessible with current technology, to seek for a signature of the non-abelian nature of the ν = 5/2 quantum Hall state. Calculating the voltage and temperature dependence of the current and noise oscillations, we predict the non-abelian nature to materialize through a multiplicity of the possible outcomes: two qualitatively different frequency dependences of the nonzero interference noise.

Journal
Journal of Statistical Mechanics: Theory and Experiment
Date Published
Group (Lab)

A 3D immersed interface method for fluid-solid interaction

Cornell Affiliated Author(s)
Author
S. Xu
Z.J. Wang
Abstract

In immersed interface methods, solids in a fluid are represented by singular forces in the Navier-Stokes equations, and flow jump conditions induced by the singular forces directly enter into numerical schemes. This paper focuses on the implementation of an immersed interface method for simulating fluid-solid interaction in 3D. The method employs the MAC scheme for the spatial discretization, the RK4 scheme for the time integration, and an FFT-based Poisson solver for the pressure Poisson equation. A fluid-solid interface is tracked by Lagrangian markers.

Journal
Computer Methods in Applied Mechanics and Engineering
Date Published
Group (Lab)
Z. Jane Wang Group