Publications
Probing transport in quantum many-fermion simulations via quantum loop topography
Quantum many-fermion systems give rise to diverse states of matter that often reveal themselves in distinctive transport properties. While some of these states can be captured by microscopic models accessible to numerical exact quantum Monte Carlo simulations, it nevertheless remains challenging to numerically access their transport properties. Here, we demonstrate that quantum loop topography (QLT) can be used to directly probe transport by machine learning current-current correlations in imaginary time.
Normal Form for Renormalization Groups
The results of the renormalization group are commonly advertised as the existence of power-law singularities near critical points. The classic predictions are often violated and logarithmic and exponential corrections are treated on a case-by-case basis. We use the mathematics of normal form theory to systematically group these into universality families of seemingly unrelated systems united by common scaling variables. We recover and explain the existing literature and predict the nonlinear generalization for the universal homogeneous scaling functions.
Quantum dimer models emerging from large-spin ultracold atoms
We propose an experimental protocol for using cold atoms to create and probe quantum dimer models, thereby exploring the Pauling-Anderson vision of a macroscopic collection of resonating bonds. This process can allow the study of exotic crystalline phases, fractionalization, topological spin liquids, and the relationship between resonating dimers and superconductivity subjects which have been challenging to address in solid-state experiments.
Chebyshev Approximation and the Global Geometry of Model Predictions
Complex nonlinear models are typically ill conditioned or sloppy; their predictions are significantly affected by only a small subset of parameter combinations, and parameters are difficult to reconstruct from model behavior. Despite forming an important universality class and arising frequently in practice when performing a nonlinear fit to data, formal and systematic explanations of sloppiness are lacking. By unifying geometric interpretations of sloppiness with Chebyshev approximation theory, we rigorously explain sloppiness as a consequence of model smoothness.
Coupled-wire description of the correlated physics in twisted bilayer graphene
Since the discovery of superconductivity and correlated insulators at fractional electron fillings in twisted bilayer graphene, most theoretical efforts have been focused on describing this system in terms of an effective extended Hubbard model. However, it was recognized that an exact tight-binding model on the moiré superlattice which captures all the subtleties of the bands can be exceedingly complicated.
Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures
A transistor based on spin rather than charge—a spin transistor—could potentially offer non-volatile data storage and improved performance compared with traditional transistors. Many approaches have been explored to realize spin transistors, but their development remains a considerable challenge. The recent discovery of two-dimensional magnetic insulators such as chromium triiodide (CrI 3 ), which offer electrically switchable magnetic order and an effective spin filtering effect, can provide new operating principles for spin transistors.
Strong spin-phonon coupling unveiled by coherent phonon oscillations in Ca2RuO4
We utilize near-infrared femtosecond pulses to investigate coherent phonon oscillations of Ca2RuO4. The coherent Ag phonon mode of the lowest frequency changes abruptly not only its amplitude but also the oscillation phase as the spin order develops. In addition, the phonon mode shows a redshift entering the magnetically ordered state, which indicates a spin-phonon coupling in the system. Density functional theory calculations reveal that the Ag oscillations result in octahedral tilting distortions, which are exactly in sync with the lattice deformation driven by the magnetic ordering.
Nonlinear anomalous Hall effect in few-layer WTe 2
The Hall effect occurs only in systems with broken time-reversal symmetry, such as materials under an external magnetic field in the ordinary Hall effect and magnetic materials in the anomalous Hall effect (AHE) 1 . Here we show a nonlinear AHE in a non-magnetic material under zero magnetic field, in which the Hall voltage depends quadratically on the longitudinal current 2–6 . We observe the effect in few-layer T d -WTe 2 , a two-dimensional semimetal with broken inversion symmetry and only one mirror line in the crystal plane.
Strong damping-like spin-orbit torque and tunable Dzyaloshinskii-Moriya interaction generated by low-resistivity Pd1−xPtx alloys
Despite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin-orbit torque (SOT) operations are currently energy inefficient due to a low damping-like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd 1− x Pt x , which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors.
Carrier confinement effects observed in the normal-state electrical transport of electron-doped cuprate trilayers
SrCuO2/Sr0.9La0.1CuO2/SrCuO2 trilayers were grown by oxide-molecular beam epitaxy. The thicknesses of the top and bottom SrCuO2 layers were fixed, while the thickness of the infinite-layer electron-doped cuprate Sr0.9La0.1CuO2 central layer was systematically changed. Transmission electron microscopy, x-ray reflectivity and x-ray diffraction measurements were performed to assess the sample quality and the abruptness of the interfaces.