Skip to main content

Bidirectional Self-Folding with Atomic Layer Deposition Nanofilms for Microscale Origami

Cornell Affiliated Author(s)

Author

B. Bircan
M.Z. Miskin
R.J. Lang
M.C. Cao
K.J. Dorsey
M.G. Salim
W. Wang
D.A. Muller
P.L. McEuen
Itai Cohen

Abstract

Origami design principles are scale invariant and enable direct miniaturization of origami structures provided the sheets used for folding have equal thickness to length ratios. Recently, seminal steps have been taken to fabricate microscale origami using unidirectionally actuated sheets with nanoscale thickness. Here, we extend the full power of origami-inspired fabrication to nanoscale sheets by engineering bidirectional folding with 4 nm thick atomic layer deposition (ALD) SiNx-SiO2 bilayer films. Strain differentials within these bilayers result in bending, producing microscopic radii of curvature. We lithographically pattern these bilayers and localize the bending using rigid panels to fabricate a variety of complex micro-origami devices. Upon release, these devices self-fold according to prescribed patterns. Our approach combines planar semiconductor microfabrication methods with computerized origami design, making it easy to fabricate and deploy such microstructures en masse. These devices represent an important step forward in the fabrication and assembly of deployable micromechanical systems that can interact with and manipulate micro- and nanoscale environments. Copyright © 2020 American Chemical Society.

Date Published

Journal

Nano Letters

Volume

20

Issue

7

Number of Pages

4850-4856,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088207129&doi=10.1021%2facs.nanolett.0c00824&partnerID=40&md5=43cd1150ed58c5da8283127ba772bee7

DOI

10.1021/acs.nanolett.0c00824

Group (Lab)

Itai Cohen Group
Paul McEuen Group

Download citation