News
Full listing
May 23, 2023
In a breakthrough for topological quantum computation, Google Quantum AI successfully observed the behavior of non-Abelion anyons for the first time ever. Despite being completely identical, when these particles are made to swap places, they retain a "memory" that makes it possible to tell that they've been swapped. And now this "memory" (along with other, even stranger behaviors) have been observed in a series of experiments. Eun-Ah Kim and former postdoc Yuri Lensky developed the protocol that allowed the team at Google Quantum AI to braid and manipulate the non-Abelian anyons.
May 12, 2023
Eun-Ah Kim, professor of physics in the College of Arts and Sciences, and Google researchers report the first demonstration of two-dimensional particles, called non-Abelian anyons, that are the key ingredient for realizing topological quantum computing, a promising method of introducing fault resistance to quantum computing.
May 9, 2023
Similar efforts to turn electrons into non-abelian anyons have also stalled. Bob Willett of Nokia Bell Labs has probably come the closest in his attempts to corral electrons in gallium arsenide, where promising but subtle signs of braiding exist. The data is messy, however, and the ultracold temperature, ultrapure materials, and ultrastrong magnetic fields make the experiment tough to reproduce.
“There has been a long history of not observing anything,” said Eun-Ah Kim of Cornell University.
Wrangling electrons, however, is not the only way to make non-abelian quasiparticles.
“I had given up on all of this,” said Kim, who spent years coming up with ways to detect anyons as a graduate student and now collaborates with Google. “Then came the quantum simulators.”
May 3, 2023
Wang’s lab focuses on the motion, dynamics and mechanics of DNA; how DNA motor proteins collide and navigate through roadblocks; and DNA topology during transcription and replication. These highly complex problems require the development of real-time techniques to decipher the actions of multiple players, while also simultaneously allowing the ability to mechanically control, alter and measure DNA topology.
Wang’s lab has pioneered several technologies that mimic DNA-based biological processes, including “DNA unzipping” and optical trapping. She joined the Cornell faculty in 1998; among her honors is an Alfred P. Sloan Research Fellow Award (1999-2001) and election to the American Physical Society in 2009.
May 3, 2023
Debanjan Chowdhury uses a variety of theoretical techniques to study and predict the quantum properties of trillions of interacting electrons in interesting materials, ranging from high-temperature superconductors to exotic magnets. His contributions have been recognized by a CAREER award from the National Science Foundation and by a Sloan research fellowship from the Alfred P. Sloan foundation.
April 13, 2023
Some classical computers have error correction built into their memories based on bits; quantum computers, to be workable in the future, will need error correction mechanisms, too, based on the vastly more sensitive qubits.
Cornell Professor Eun-Ah Kim and former Bethe/KIC/Wikins postdoctoral fellow Yuri Lensky (now at Google) have recently taken a step toward fault-tolerant quantum computing: they constructed a simple model containing exotic particles called non-Abelian anyons, compact and practical enough to run on modern quantum hardware. Realizing these particles, which can only exist in two dimensions, is a move towards implementing it in the real world.
March 21, 2023
A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.
The group’s paper, “Gate-Tunable Heavy Fermions in a Moiré Kondo Lattice,” published March 15 in Nature. The lead author is postdoctoral fellow Wenjin Zhao in the Kavli Institute at Cornell.
The project was led by Kin Fai Mak, professor of physics in the College of Arts and Sciences, and Jie Shan, professor of applied and engineering physics in Cornell Engineering and in A&S, the paper’s co-senior authors. Both researchers are members of the Kavli Institute; they came to Cornell through the provost’s Nanoscale Science and Microsystems Engineering (NEXT Nano) initiative.