Publications
Visualizing patterns in CSEM responses to assess student conceptual understanding
The Conceptual Survey of Electricity and Magnetism (CSEM) has been utilized to measure learning gains in electricity and magnetism (E and M) physics courses, where “correct“ vs “incorrect“ responses are typically used for analysis. However, such comparisons do not necessarily identify specific changes in student reasoning from pre- to post-instruction. To address this issue, we have generated network-like graphs for each question: Responses at pre- and post-test are represented by nodes connected by edges representing the change in student response choice.
Who does what now? How physics lab instruction impacts student behaviors
While laboratory instruction is a cornerstone of physics education, the impact of student behaviours in labs on retention, persistence in the field, and the formation of students' physics identity remains an open question. In this study, we performed in-lab observations of student actions over two semesters in two pedagogically different sections of the same introductory physics course. We used a cluster analysis to identify different categories of student behaviour and analyzed how they correlate with lab structure and gender.
Introductory physics labs: We can do better
Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content
Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional.
Toolboxes and handing students a hammer: The effects of cueing and instruction on getting students to think critically
Developing critical thinking skills is a common goal of an undergraduate physics curriculum. How do students make sense of evidence and what do they do with it? In this study, we evaluated students' critical thinking behaviors through their written notebooks in an introductory physics laboratory course. We compared student behaviors in the Structured Quantitative Inquiry Labs (SQILabs) curriculum to a control group and evaluated the fragility of these behaviors through procedural cueing.
Gender gaps and gendered action in a first-year physics laboratory
It is established that male students outperform female students on almost all commonly used physics concept inventories. However, there is significant variation in the factors that contribute to the gap, as well as the direction in which they influence it. It is presently unknown if such a gender gap exists on the relatively new Concise Data Processing Assessment (CDPA) and, therefore, whether gendered actions in the teaching lab might influence - or be influenced by - the gender gap.
Examining and contrasting the cognitive activities engaged in undergraduate research experiences and lab courses
While the positive outcomes of undergraduate research experiences (UREs) have been extensively categorized, the mechanisms for those outcomes are less understood. Through lightly structured focus group interviews, we have extracted the cognitive tasks that students identify as engaging in during their UREs. We also use their many comparative statements about their coursework, especially lab courses, to evaluate their experimental physics-related cognitive tasks in those environments.
Measuring the impact of an instructional laboratory on the learning of introductory physics
We have analyzed the impact of taking an associated lab course on the final exam scores in two large introductory physics courses. Performance between students who did and did not take the lab course was compared using final exam questions from the associated courses that related to concepts from the lab courses. The population of students who took the lab in each case was somewhat different from those who did not enroll in the lab course in terms of background and major.
Teaching critical thinking
The ability to make decisions based on data, with its inherent uncertainties and variability, is a complex and vital skill in the modern world. The need for such quantitative critical thinking occurs in many different contexts, and although it is an important goal of education, that goal is seldom being achieved. We argue that the key element for developing this ability is repeated practice in making decisions based on data, with feedback on those decisions.
Quantitative comparisons to promote inquiry in the introductory physics lab
In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation.