Strain-induced orbital-energy shift in antiferromagnetic RuO2 revealed by resonant elastic x-ray scattering
Abstract
In its ground state, RuO2 was long thought to be an ordinary metallic paramagnet. Recent neutron and x-ray diffraction revealed that bulk RuO2 is an antiferromagnet with TN above 300 K. Furthermore, epitaxial strain induces superconductivity in thin films of RuO2 below 2 K. Here, we present a resonant elastic x-ray scattering study at the RuL2 edge of the strained RuO2 films exhibiting the strain-induced superconductivity. We observe an azimuthal modulation of the 100 Bragg peak consistent with bulk. Most notably, in the strained films displaying superconductivity, we observe a ∼1eV shift of the Rueg orbitals to a higher energy. The energy shift is smaller in thicker, relaxed films and films with a different strain direction. Our results provide further evidence of the utility of epitaxial strain as a tuning parameter in complex oxides. © 2022 American Physical Society.