Skip to main content

Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms

Cornell Affiliated Author(s)

Author

F.P. Casey
J.J. Waterfall
R.N. Gutenkunst
C.R. Myers
J.P. Sethna

Abstract

We demonstrate the use of a variational method to determine a quantitative lower bound on the rate of convergence of Markov chain Monte Carlo (MCMC) algorithms as a function of the target density and proposal density. The bound relies on approximating the second largest eigenvalue in the spectrum of the MCMC operator using a variational principle and the approach is applicable to problems with continuous state spaces. We apply the method to one dimensional examples with Gaussian and quartic target densities, and we contrast the performance of the random walk Metropolis-Hastings algorithm with a "smart" variant that incorporates gradient information into the trial moves, a generalization of the Metropolis adjusted Langevin algorithm. We find that the variational method agrees quite closely with numerical simulations. We also see that the smart MCMC algorithm often fails to converge geometrically in the tails of the target density except in the simplest case we examine, and even then care must be taken to choose the appropriate scaling of the deterministic and random parts of the proposed moves. Again, this calls into question the utility of smart MCMC in more complex problems. Finally, we apply the same method to approximate the rate of convergence in multidimensional Gaussian problems with and without importance sampling. There we demonstrate the necessity of importance sampling for target densities which depend on variables with a wide range of scales. © 2008 The American Physical Society.

Date Published

Journal

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Volume

78

Issue

4

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-55149125844&doi=10.1103%2fPhysRevE.78.046704&partnerID=40&md5=8a56b3e5f921e528f8c28f2ba41274dc

DOI

10.1103/PhysRevE.78.046704

Research Area

Group (Lab)

Christopher Myers
James Sethna Group

Funding Source

0705167

Download citation