Skip to main content

Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source

Cornell Affiliated Author(s)

Author

T.-Y. Lan
J.L. Wierman
M.W. Tate
H.T. Philipp
J.M. Martin-Garcia
L. Zhu
D. Kissick
P. Fromme
R.F. Fischetti
W. Liu
V. Elser
Sol Gruner

Abstract

In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources. © 2018 International Union of Crystallography. All rights reserved.

Date Published

Journal

IUCrJ

Volume

5

Number of Pages

548-558,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053159147&doi=10.1107%2fS205225251800903X&partnerID=40&md5=1dcda0342e0a0fbddff3c95ead524f4d

DOI

10.1107/S205225251800903X

Group (Lab)

Sol M. Gruner Group
Veit Elser Group

Download citation