Skip to main content

Readiness for the Cornell ERL

Cornell Affiliated Author(s)


G.H. Hoffstaetter
A. Bartnik
I.V. Bazarov
D.H. Bilderback
M.G. Billing
J.D. Brock
J. Crittenden
L. Cultrera
D. Dale
J.A. Dobbins
B.M. Dunham
R.D. Ehrlich
M.P. Ehrlichman
R. Eichhorn
K.D. Finkelstein
E. Fontes
M.J. Forster
S. Full
F. Furuta
D. Gonnella
S.W. Gray
Sol Gruner
C. Gulliford
D.L. Hartill
Y. He
R.G. Helmke
V. Ho
R.P. Kaplan
S.S. Karkare
V.O. Kostroun
H.A. Lee
Y. Li
X. Liu
M.U. Liepe
L. Cultrera
C.E. Mayes
J.M. Maxson
A.A. Mikhailichenko
H.S. Padamsee
R. Patterson
S.B. Peck
S.E. Posen
P.G. Quigley
P. Revesz
D.H. Rice
D.C. Sagan
J.O. Sears
V.D. Shemelin
D.M. Smilgies
E.N. Smith
K.W. Smolenski
A.B. Temnykh
M. Tigner
N.R.A. Valles
V.G. Veshcherevich
A.R. Woll
Y. Xie
Z. Zhao


Energy-Recovery Linacs (ERLs) are proposed as drivers for hard x-ray sources because of their ability to produce electron bunches with small, flexible cross sections and short lengths at high repetition rates. Cornell University has pioneered the design and hardware for ERL lightsources. This preparatory research for ERL-lightsource construction will be discussed. Important milestones have been achieved in Cornell's prototype ERL injector, including the production of a prototype SRF cavity that exceeds design specifications, the regular production of long-lived and low emittance cathodes, the acceleration of ultra-low emittance bunches, and the world-record of 65 mA current from a photoemission DC gun. We believe that demonstration of the practical feasibility of these technologies have progressed sufficiently to allow the construction of an ERL-based lightsource like that described in Ref [1]. Copyright © 2013 by JACoW- cc Creative Commons Attribution 3.0 (CC-BY-3.0).

Date Published

Conference Name



Group (Lab)

Sol M. Gruner Group

Download citation