Skip to main content

Neuromuscular embodiment of feedback control elements in Drosophila flight

Cornell Affiliated Author(s)

Author

S.C. Whitehead
S. Leone
T. Lindsay
M.R. Meiselman
N.J. Cowan
M.H. Dickinson
N. Yapici
D.L. Stern
T. Shirangi
Itai Cohen

Abstract

While insects such as Drosophila are flying, aerodynamic instabilities require that they make millisecond time scale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units-prominent components of the fly's steering muscle system-modulate specific elements of the PI controller: the angular displacement (integral) and angular velocity (proportional), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies. © 2022 The Authors.

Date Published

Journal

Science Advances

Volume

8

Issue

50

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144195535&doi=10.1126%2fsciadv.abo7461&partnerID=40&md5=3e1054b22c48e5f54ac4ae39afb6df54

DOI

10.1126/sciadv.abo7461

Research Area

Group (Lab)

Itai Cohen Group

Download citation