Skip to main content

News

Full listing

Like light switches, transistors control the flow of electric currents. Transistors are the fundamental building blocks of any computing device, from smartphones to the computers in cars. According to Phuong Nguyen, a PhD candidate under the direction of Kin Fai Mak, Physics, and Jie Shan, Applied Engineering and Physics, we could possibly fit billions or even trillions more transistors into a device, creating a computer that is ultrafast and consumes less energy. The key: two-dimensional materials.
A novel called "Spiral" written by Paul McEuen gets brought in with 13 other Cornell novels!
Natasha Holmes has been named Ann S. Bowers Associate Professor, and Kin Fai Mak is the inaugural Josephson Family Professor. These professorships are possible because of generous gifts from alumni, parents and friends. Those gifts allow the College to replace retiring faculty, recruit stellar new faculty and recognize and retain mid-career and senior faculty to provide leadership across the disciplines and in areas of strategic importance.
Assistant Professor Debanjan Chowdhury is one of two LASSPers to receive a 2023 A&S New Frontier grant for a project. His project, titled “Probing dynamics of electronic quantum crystals on near-term quantum computers,” will study a special class of quantum magnets using noisy intermediate-scale quantum computing (NISQ) devices. 
Professor Itai Cohen is one of two LASSPers to receive a 2023 A&S New Frontier grant for a project. His project, titled “Strong Amphibious Robots,” seeks to build on the Cohen Group’s previous research on microscopic robots and origami metamaterials.
In a breakthrough for topological quantum computation, Google Quantum AI successfully observed the behavior of non-Abelion anyons for the first time ever. Despite being completely identical, when these particles are made to swap places, they retain a "memory" that makes it possible to tell that they've been swapped. And now this "memory" (along with other, even stranger behaviors) have been observed in a series of experiments. Eun-Ah Kim and former postdoc Yuri Lensky developed the protocol that allowed the team at Google Quantum AI to braid and manipulate the non-Abelian anyons.
Eun-Ah Kim, professor of physics in the College of Arts and Sciences, and Google researchers report the first demonstration of two-dimensional particles, called non-Abelian anyons, that are the key ingredient for realizing topological quantum computing, a promising method of introducing fault resistance to quantum computing.
Similar efforts to turn electrons into non-abelian anyons have also stalled. Bob Willett of Nokia Bell Labs has probably come the closest in his attempts to corral electrons in gallium arsenide, where promising but subtle signs of braiding exist. The data is messy, however, and the ultracold temperature, ultrapure materials, and ultrastrong magnetic fields make the experiment tough to reproduce. “There has been a long history of not observing anything,” said Eun-Ah Kim of Cornell University. Wrangling electrons, however, is not the only way to make non-abelian quasiparticles. “I had given up on all of this,” said Kim, who spent years coming up with ways to detect anyons as a graduate student and now collaborates with Google. “Then came the quantum simulators.”
Debanjan Chowdhury uses a variety of theoretical techniques to study and predict the quantum properties of trillions of interacting electrons in interesting materials, ranging from high-temperature superconductors to exotic magnets. His contributions have been recognized by a CAREER award from the National Science Foundation and by a Sloan research fellowship from the Alfred P. Sloan foundation.
Wang’s lab focuses on the motion, dynamics and mechanics of DNA; how DNA motor proteins collide and navigate through roadblocks; and DNA topology during transcription and replication. These highly complex problems require the development of real-time techniques to decipher the actions of multiple players, while also simultaneously allowing the ability to mechanically control, alter and measure DNA topology. Wang’s lab has pioneered several technologies that mimic DNA-based biological processes, including “DNA unzipping” and optical trapping. She joined the Cornell faculty in 1998; among her honors is an Alfred P. Sloan Research Fellow Award (1999-2001) and election to the American Physical Society in 2009.