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Using a Bayesian approach a general method is developed to assess error bars on predictions made by
models fitted to data. The error bars are estimated from fluctuations in ensembles of models sampling
the model-parameter space with a probability density set by the minimum cost. The method is applied to
the development of interatomic potentials for molybdenum using various potential forms and databases
based on atomic forces. The calculated error bars on elastic constants, gamma-surface energies,
structural energies, and dislocation properties are shown to provide realistic estimates of the actual

errors for the potentials.
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Interatomic potentials are used extensively to study the
structural and dynamical properties of a wide range of
materials from biomolecules to polymers and semicon-
ductors to metals and alloys [1]. Typically interatomic
potentials are computationally very fast because calcu-
lations of atomic energies and forces are carried out by
explicit evaluations of pairlike or angular terms which
depend exclusively on the coordinates of a few atoms at a
time. This is in contrast to the electronic structure or
quantum chemistry methods which involve a direct treat-
ment of the electronic degrees of freedom. The inter-
atomic potentials therefore allow for more elaborate
simulations: the dynamics of larger systems can be
studied for longer times or a more accurate sampling of
the configuration space can be obtained in studies of
thermal properties.

The speed and simplicity of the interatomic potentials
are, however, often obtained at the cost of a lurking
uncertainty about their accuracy and predictive power.
Most interatomic potentials are constructed in such a
way that a number of essential quantities are guaranteed
to be reproduced correctly compared to either experimen-
tal values or more accurate calculations. For example,
interatomic potentials of crystalline metals usually repro-
duce experimental lattice constants and cohesive ener-
gies. However, to what extent a given interatomic
potential is transferable (i.e., can be used in more general
situations) is usually a matter of experience and not
something which is tested systematically. In this Letter
we propose a systematic method for estimating transfer-
ability errors: through the generation of ensembles of
potentials we estimate error bars for the predictions of
these atomistic calculations.

In standard potential development a functional form is
derived or taken from the literature and its parameters 6
are fitted to a list of data originating either from experi-
ment or from theoretical calculations. By minimizing a
cost function C(6), which measures the quality of the fit,
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the procedure returns a minimum cost C, and the corre-
sponding set of parameters 6. The best-fit basin can be
quite shallow in several parameter directions; many
neighboring parameter sets 6 will fit the data almost as
well as well as 6. This leads us to question the result of
predictions made using the best-fit parameters alone; it
seems dangerous not to consider fluctuations in the pre-
dictions generated by neighboring parameter sets.

The approach described in the present Letter is inspired
by Bayesian statistics [2] and recent work on the model-
ing of complex biochemical networks [3]. Whereas the
standard method takes a maximum likelihood approach
to parameter selection, the method we employ assigns a
conditional probability P(6|D, M) to each set of parame-
ters given a database D and a model M. Assuming inde-
pendent normal errors in the database, this probability
may be written as

D

P(8|D, M) « exp[— @}

T

with cost function C(0) = Y¥(y; — y?)?/2. Here y; are
quantities from the database, y! are the correspond-
ing quantities calculated using the model, and T is a
temperature introduced to formalize the weighting of
different parameter sets. Typical data-fitting approaches
to potential development can be viewed as a special case
of this approach using T = 0 or equivalently P(6|D, M) =
8(6 — 6y). In what follows, we use the minimal value of
the cost Cy to set the temperature. Specifically, since each
mode contributes an average energy of 7/2 in a harmonic
model, we define a natural temperature by T, = 2C/N,,
where N, is the number of parameters in the potential. At
this temperature the distribution given in Eq. (1) samples
over parameter sets whose additional errors are within the
residual error of the best fit.

Based on the probability in Eq. (1) an ensemble of po-
tential parameters can be generated given a temperature
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T, a database D, and a model M. For any observable O the
ensemble mean (O)|7 p 5y and standard deviation o3 |7 p y
can then be calculated.

By generating an entire ensemble of potentials it is
possible to explore how uncertainty in the parameters
influences predictions of the potential. Usually accuracy
and transferability are tested against an external database
while with an ensemble it is possible to test these prop-
erties internally by making use of fluctuations in the
ensemble.

Interatomic potentials for molybdenum.—While the
previous discussion has been quite general and applies
to any multiparameter model matched to data, in this
section we specialize to the development and evaluation
of an interatomic potential for molybdenum.

The data used to fit the molybdenum potential will be
given in the form of atomic forces. This idea, known as
the force matching method, was introduced by Ercolessi
and Adams [4] and offers a simple way of parsing data
from density functional theory (DFT) calculations into
an interatomic potential. A force field database covering
bulk molybdenum systems is constructed. Four differ-
ent periodic systems with 64 atoms in the unit cells are
used: a bce crystal with random atomic displacements
picked from a Gaussian distribution of width 0.047 A
(corresponding to roughly a temperature of 300 K),
a bee crystal with random displacements of 0.135 A
(2500 K), a system with two easy-core dislocations, and
a system with two hard-core dislocations. In the latter
two systems atomic displacements corresponding to
300 K are also applied. The atomic forces are calculated
using the DFT pseudopotential code DACAPO [5].

In the following we test three different potential forms:
an effective medium theory potential [10] with angular
dependent terms [which will be referred to as the modi-
fied effective medium theory (MEMT) potential], a
Finnis-Sinclair (FS) potential [11], and a modified em-
bedded atom method (MEAM) [12] potential. The
MEMT potential has the usual effective medium form
[10] with two modifications. First, the pair potential is not
given by a single exponentially decaying function of
interatomic distance but is expanded in cosines in a range
of interatomic distances, and second angular dependence
has been added. The angular dependent contribution to
the total energy is in the form of sums over pairs of atoms
using projections onto p and d spherical harmonics.
Because of the cosine expansions of the pair potential
and because of two functions appearing in the angular
terms, the MEMT potential has a variable number of
parameters. The values for the lattice constant (a =
3.187 A), the bulk modulus (B = 266 GPa) and the co-
hesive energy (E.,, = —6.029 eV ) are by construction
constrained to the DFT values. The details of the poten-
tial will be presented elsewhere [13].

The FS potential has a general form somewhat similar
to the MEMT potential without the angular terms, but its
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detailed functional form is different and has only six free
parameters. The MEAM potential differs from the
MEMT and FS potentials both in the choice for the
angular dependence and in the utilization of a special
“screening” method which modifies the interactions
between two atoms depending on their environment.
Constraining the lattice constant, the bulk modulus, and
the cohesive energy gives the MEAM potential only five
parameters.

The optimal number of parameters for the MEMT
potential is determined using the training-test method
[14]. The potential parameters are fitted to a training set
while the performance of the potential is evaluated using
a test set. Force fields from bcc systems at 2500 K are used
as training and test sets. The training error is a mono-
tonically decreasing function of the number of parame-
ters while the test error has a global minimum as shown
in Fig. 1. The optimal number of parameters is set by the
minimum test error. The minimum arises as a compro-
mise between an insufficient model (too few parameters)
and overfitting of data (too many parameters). A similar
approach was reported by Mishin et al [15].

Potential Ensembles.—The Monte Carlo algorithm of-
fers a simple way of generating an ensemble according to
Eq. (1). However, special care has to be taken to obtain an
efficient sampling of the parameter space because of the
character of the cost function. In the region around the
optimal parameter set, 6,, the curvatures of the cost
function in different directions vary enormously [3]. In
the case of the 21-parameter MEMT potential the eigen-
values of the Hessian span 7 orders of magnitude. The
Monte Carlo trial moves are therefore rescaled using the
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FIG. 1. Model selection using test and training sets. The cost
is plotted as function of the total number of potential parame-
ters. MEMT potentials with up to 40 parameter are fitted while
the FS and the MEAM have a fixed number of parameters. The
minimum test error is obtained with 21 parameters with one
parameter in the density function, 9 parameters in the pair
potential, 6 parameters in the angular p term, and 5 parameters
in the angular d term. The relatively poor performance of the
MEAM potential is also seen in tantalum [19]; its screening
method is not useful on the bulk systems we have used.
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calculated Hessian as in Ref. [3]. In Fig. 2 the distribu-
tions of the structural energy difference between fcc and
bce are plotted for ensembles based on the MEMT po-
tential for different temperatures. The ensembles are
formed from 1000 sets of parameters taken from Monte
Carlo simulations involving 10° trial moves [16]. When
the temperature is reduced the distributions contract
around the best-fit value. The structural energy difference
is one of the quantities which is not particularly well
reproduced by the MEMT best-fit potential (compared
to, for example, the elastic constants), however, at the
temperature T, the width of the ensemble distribution is
seen to become comparable to the difference between the
best-fit value and the DFT value.

In the following we study to what extent the distribu-
tion of an observable can be taken as an estimate of the
accuracy of the prediction. For a given set of observables
O we define the cumulative error distribution D as

1
D(r) = N Z O(rop — 10y — OPFT)), ()
(0]=10]

where O is the Heaviside step function and the summation
is running over all N observables in the set O. The
observable calculated with DFT (i.e., the “correct’ result)
is denoted by OPFT while the best-fit value is denoted by
Oy. The cumulative error distribution at r thus returns the
fraction of observables having an error of less than r o.
For a Gaussian distribution of errors and standard devia-
tions one therefore obtains D(r) = erf(r//2).

We first study the distribution for the force components
of all atoms in a database similar to the one used for
generating the potential ensembles. The new database
differs from the one used to generate the ensembles only
in the displacements of the 4 X 64 atoms. Since each atom
has three force components the total number of observ-
ables is 768. In Fig. 3 the cumulative distributions are
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FIG. 2. Ensemble distributions of the structural energy dif-
ference between fcc and bee. Distributions are calculated using
the MEMT potential for different ensemble temperatures. In
the inset means (u) and standard deviations (o) are plotted as
function of the temperature.
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plotted for the three potentials using ensembles generated
at a temperature of T,. The similarity with the Gaussian
error estimate is good for the Finnis-Sinclair and the
MEMT potentials. For the MEAM potential which is
the most restricted model, we are underestimating the
errors but by less than a factor of 2.

Encouraged by the good agreement for the error esti-
mate on the force components we proceed by studying
other observables which are less directly involved when
the potentials are generated. In Table I different bulk
properties are calculated based on the potential ensem-
bles. We also vary the character of the fitting database
used to generate the potentials. The jagged curve in Fig. 3
shows the cumulative distribution using all the means and
standard deviations listed in Table 1. The properties in
Table I were selected and tabulated before Fig. 3 was
envisioned. Considering that the error estimates range
from 7% to above 200%, the fit of the ratios with the
true errors to a Gaussian is remarkable. We note that the
two largest ratios are both again for the MEAM potential,
where our error estimates for the forces were also slightly
too small.

It can be noted that the anharmonic effects in the
ensembles at T, can be quite strong, showing up, for
example, as considerable differences between best-fit val-
ues and ensemble averages. In some case potentials in the
T, ensembles also appear “‘unphysical” in the sense that
atomic relaxations may lead to completely different struc-
tures. We therefore also tried an alternative procedure for
estimating the error bars by performing simulations at a
lower temperature of Ty/4. In this regime the anharmonic
effects turn out to be small and by appropriate harmonic
rescaling of the obtained standard deviations to T, an
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FIG. 3. Cumulative error distributions of force components
and the observables in Table 1. The cumulative distribution
defined in Eq. (2) is calculated for each of the three potentials
using the force components as the set of observables. The
ensembles are generated at a temperature of T,,. Furthermore,
the distribution obtained with all the observables in Table I is
also shown. The good agreement with the Gaussian error
function is an indication that the calculated standard deviations
provide a good estimate of the actual errors.
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TABLE L

Best-fit values and standard deviations of potential quantities. The standard deviations are calculated from ensembles

at the temperature 7). The quantities cover the three elastic constants ¢, ¢|,, and cyy4, the interface energies for the gamma surfaces
with (110) and (211) orientations and a displacement of half a Burgers vector in the (11 1) direction, the energy differences between
the bec structure and the al5 and fcc structures, the energy difference between a screw dislocation in the hard core and easy core
structures, and finally the energy required to create a double kink on a screw dislocation. For the first three columns the database
includes all the four 64 atom systems described in the text while the “BCC” database includes only the bcc system at 2500 K. The
database “Con.” denotes the full database with the additional constraints AEjy,g-gasy = 150 * 50 meV/b and ¢4y = 90 = 10 GPa.

Pot. M (Database D) MEMT FS MEAM MEMT (bcc) MEMT (Con.)  DFT Expt.
Observable O Oy o9 Oy oo Oy oo O oo O oo
cy1 (GPa) 440 34 456 130 277 49 405 34 440 15 444 450 [17]
¢y, (GPa) 179 18 228 70 272 24 197 18 179 16 176 173 [17]
cy4 (GPa) 86 33 89 33 71 25 86 44 86 8 97 125 [17]
7(1]0)(3) (J/m?) 1.37 0.15 1.28 0.30 091 0.57 1.33 0.15 1.37  0.14 1.61
7(211)(%) (J/m?) 1.54 0.15 1.48 0.34 1.10 0.68 1.51 0.14 .54  0.14 1.61
AE,i5-pec (meViat.) 80 61 125 393 318 178 38 81 80 51 99
AFEfeepe. (meV/at) 216 82 427 456 207 222 173 313 216 73 399
AEg-pasy (€V/b) 0.27 0.14 0.40 0.29 -0.23  1.10 033 023 0.27  0.05 0.12
AEp kink (€V) 094 0.37 1.46  0.43 094  0.38 — 1.27 [18]

even better agreement with the Gaussian distribution in
Fig. 3 is obtained.

In conclusion, we have proposed a general method to
evaluate interatomic potentials. Without comparison to
measurements or more accurate calculations for a given
observable the method is able to assign an error bar to the
calculated value. Of course, in order to validate the ap-
proach, we have focused on quantities whose results are
already known either from DFT or experiments, thus
allowing us to compare potentials in a systematic way.
The method can be used to evaluate different types of
interatomic potentials against each other and may also be
useful in guiding the choice of functional forms when
constructing new potentials. It may also be possible to use
the approach to optimize the fitting database when gen-
erating potentials with specific applications in mind.
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