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Abstract. We consider the single-spin-flip dynamics of the random-field Ising model on a
Bethe lattice at zero temperature in the presence of a uniform external field. We determine
the average magnetization as the external field is varied from−∞ to +∞ by setting up the
self-consistent field equations, which we show are exact in this case. The qualitative behaviour
of magnetization as a function of the external field unexpectedly depends on the coordination
numberz of the Bethe lattice. Forz = 3, with a Gaussian distribution of the quenched random
fields, we find no jump in magnetization for any non-zero strength of disorder. Forz > 4, for
weak disorder the magnetization shows a jump discontinuity as a function of the external uniform
field, which disappears for a larger variance of the quenched field. We determine exactly the
critical point separating smooth hysteresis curves from those with a jump. We have checked our
results by Monte Carlo simulations of the model on three- and four-coordinated random graphs,
which for large system sizes give the same results as on the Bethe lattice, but avoid surface
effects altogether.

1. Introduction

Recently, a simple model was introduced [1] for hysteresis in magnets, which incorporates
interesting effects such as the return-point memory and Barkhausen noise [2]. In this model,
Ising spins with a quenched random field at each site evolve by a zero-temperature single-
spin-flip dynamics. The authors argued that in this model, if the external field is increased
slowly, the steady-state magnetization as a function of the field has a jump discontinuity at
some critical value of the field for a small disorder, but is a continuous function with no
jump discontinuity for large disorder. This picture was supported by numerical simulations
of the model on hypercubic lattices in two and higher dimensions. Subsequent work [3]
studied in detail the transition from jump to no jump in magnetization at a critical value
of the Gaussian disorder, and observed scaling behaviour in the neighbourhood of this
critical disorder. However, the exact solution of this model in one dimension shows a
jump discontinuity for Gaussian disorder neither for the ferromagnetic nor antiferromagnetic
exchange couplings [4].
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In this paper, we extend the treatment of [4] to study this hysteresis model on a Bethe
lattice. The Bethe lattice of coordinationz is the formal infinite-size limit of a branching
tree (the Cayley tree) where each spin hasz nearest neighbours, and the statistical averages
are calculated away from the ‘surface’ of the lattice. Forz = 3, the lowest non-trivial
coordination, we find no jump in magnetization for any non-zero disorder, if the quenched
random fields have a Gaussian distribution—just as in the one-dimensional case. For
coordinationz > 4, we find there is a non-zero critical disorder where the macroscopic
jump in magnetization in the hysteresis loop first disappears.

This is very surprising, as in all the models studied on the Bethe lattice that we are
aware of, the qualitative behaviour of the solution has been found to be independent of the
coordination number (so long as it is greater than 2). In particular, a Bethe lattice with
finite coordination numberz has the same critical behaviour as the mean-field theory, which
corresponds to the limit of large coordination numberz and coupling constant scaling as
1/z. The reason why this unusual dependence onz shows up in this problem is not yet
understood.

Our treatment is based on setting up self-consistent equations for some nearest-neighbour
correlation function in the problem [5]. We can show that these self-consistent equations
are exact in this case, although we are not aware of a rigorous proof that this happens in
general for a Bethe lattice in the presence of quenched disorder. In fact, the presence of
the disorder usually renders the problem analytically intractable. For example, for the Ising
spin-glass problem on a Bethe lattice with random±J bonds, it has not been possible to
determine exactly even the zero-temperature quantities such as the ground-state energy or
the ground-state entropy [6, 7]. However, the qualitative behaviour of the system near the
thermal critical point seems fairly well understood [8].

This paper is organized as follows. In section 2, we define the model precisely. In
section 3, we set up recursion relations on a Cayley tree for conditional probabilities that
the spin at a given site at heightr from the boundary is down, given that the spin on its
parent, ‘upward’ neighbour on the tree is down. We are interested in the intensive quantities,
such as magnetization or energy density on the tree far away from the boundary. These turn
out to be independent of details of the boundary conditions, and we take this as the definition
of Bethe approximation in our case. We obtain an explicit expression for magnetization
as a function of external field for arbitrary distribution of the quenched random fields. In
section 4, we describe a method of simulating spin systems on the Bethe lattice that is
computationally efficient, and does not suffer from surface effects. We use this method to
check the validity of our self-consistent equations for the case of Gaussian and rectangular
distributions of quenched random fields. The agreement is found to be excellent. Section 5
contains some concluding remarks.

2. The model

We consider a lattice ofN sites. Each site is labelled by an integeri = 1–N , and carries
an Ising spinSi (Si = ±1) which interacts with a finite numberz of neighbouring spins
with a ferromagnetic interactionJ . There is a uniform magnetic fieldh which is applied
externally. In addition, at each sitei, there is a local quenched random fieldhi . The
fields {hi} are assumed to be independent identically distributed random variables with a
continuous probability distributionp(h). This is the well known random-field Ising model
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[9], and is described by the Hamiltonian

H = −J
∑
〈ij〉

SiSj −
∑
i

hiSi − h
∑
i

Si . (1)

The zero-temperature single-spin-flip Metropolis–Glauber dynamics [10] is specified by the
transition rates

Rate [Si →−Si ] =
{
0 if 1E 6 0

0 otherwise
(2)

where1E is the change of energy of the system as a result of the spin-flip. We shall
be interested in long timescales� 0−1. In this limit, the dynamical rule simplifies to the
following: choose a spin at random, and flip it only if this process would lower the energy.
Repeat until a stable configuration is obtained.

The problem of hysteresis which we address here is as follows. Start with a sufficiently
large negative applied fieldh, so that in the stable configuration all spins are down (Si = −1,
for all i) and increase the field slowly. At some value ofh, the local field`i at some site
i, defined by

`i = J
∑
j

Sj + hi + h (3)

will become positive, and this spin would flip up. (The summation in (3) is over all the
neighboursj of i). This changes the effective field at the neighbours, and some of them may
flip up, etc, causing an avalanche of flipped spins. We determine the total magnetization
when the avalanche has stopped. Then we raise the applied field a bit more, and determine
the magnetization in the stable state again. The process is continued until all the spins flip
up. This generates the lower half of the hysteresis loop (plot of magnetizationm(h) versus
h) in the situation where the applied field is varied very slowly, or equivalently, when the
spins relax infinitely fast. The upper half of the hysteresis loopmu(h) is obtained when the
field h is decreased from+∞ to −∞. This is related to the lower half of the loopm`(h)
by symmetry

mu(h) = −m`(−h). (4)

This corresponds to the zero frequency limit of a driving field oscillating sinusoidally
in time with frequencyω. Note that the limit ofω→ 0 is taken after the limit temperature
T → 0. If the limits are taken in the reverse order, the area of the hysteresis loop goes to
zero asω goes to zero for all non-zeroT .

An important feature of the above dynamics for ferromagnetic couplings is that if we
start with any stable configuration, and then increase the external field and allow the system
to relax, then in the relaxation process no spin flips more than once. Furthermore, the final
stable configuration is the same whatever the order in which unstable spins are flipped. This
property is called the ‘no passing property’ [11], and greatly simplifies the analysis.

3. Recursion relations on the Cayley tree

The standard approach for solving statistical mechanics problems on the Bethe lattice is to
consider the problem on a Cayley tree, and consider behaviour deep inside the tree, i.e. far
from the boundaries of the tree [12, 13]. If suitable care is taken to remove the effects of
the boundary, all correlation functions deep inside the Cayley tree (say for the Ising model
with an external field) are found to be the same as in the Bethe approximation. Thus, we
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Figure 1. A Cayley tree of coordination number 3 and height 3.

may say that the Bethe lattice is thedeep interior part of the Cayley tree. Here we shall
use this approach. In section 4, a different approach is presented.

Consider a Cayley tree of heightn. Each site of the tree has coordination numberz,
except the boundary sites which have coordination number 1. The leveln consists of only
one site O, called the central site. Forr > 1 the level(n− r) has exactlyz(z − 1)r−1 sites
(figure 1).

We start with the external fieldh large and negative, so that ground state of the system
is with all spins down. Now, increase the external field to a finite valueh, and flip up
any spin for which the net local field is positive. As the same final stable configuration is
attained, whatever the order in which spins are relaxed, we may start by first relaxing spins
of level 1. Then we relax spins of level 2, then of level 3, etc. If a spin at levelr is flipped
up, we check all its descendents again for possible upward flips.

Let Pr be the conditional probability that a randomly chosen spin at levelr is upturned
in this scheme, given that its parent spin at level(r + 1) is kept down, and the spin and
all its descendent spins are relaxed as far as possible. LetSr be the spin at levelr. We
relax all the descendent spins ofSr first, keepingSr down. In this process, each of the
z − 1 direct descendents ofSr at level(r − 1) is independently flipped up with probability
Pr−1. Hence, the probabilities thatz − 1, z − 2, . . . ,0 of the children ofSr are flipped up
in this relaxation process areP z−1

r−1 , (z − 1)P z−2
r−1 (1− Pr−1), . . . , (1− Pr−1)

z−1 respectively.
Consider the case wheres of the children are up: since the parent neighbour remains down
for this part of the calculation, the net number of down neighbours isz − 2s, and hence,
the spinSr will flip up if the local field at this site exceeds(z−2s)J −h. Let ps(h) denote
the probability that the local field at a randomly chosen site is large enough so that the spin
will flip up if s of its children are up, and the uniform field ish. Clearly

ps(h) = Prob that local field> −h+ zJ − 2sJ

=
∫ ∞
−h+(z−2s)J

p(hi) dhi. (5)

Then it is easily seen, for example forz = 3 that

(z = 3) : Pr = P 2
r−1p2(h)+ 2Pr−1(1− Pr−1)p1(h)+ (1− Pr−1)

2p0(h). (6)

Given a value ofh, we determine the quantitiesps(h). Then, using equation (6), and the
initial condition P1 = p1(h), we can recursively determinePr for all r > 2. For large
r � n, Pr tends to a fixed pointP ? given by the self-consistent equation

P ? =
z−1∑
r=0

(z−1
r )P ?r(1− P ?)z−1−rpr(h). (7)
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This is a polynomial equation inP ?, which can be solved in terms of{ps(h)}. Finally,
for the central site O at leveln, there arez children, and a similar argument gives

Prob(SO = +1) =
z∑
r=0

(zr )P
?r(1− P ?)z−rpr(h). (8)

Substituting the value ofP ?, from equation (7), we determine the probability that this
spin SO is up, and hence the average magnetization at this site.

The arguments above do not require that all thez descendent subtrees of O be of equal
height. So long as O is sufficiently far from the boundary, we get the same conditional
probabilityP ?, and hence the same value of magnetization. This proves that all sites ‘deep
inside’ the tree have the same average magnetization.

4. Simulations

The derivation of our self-consistent equations assumes the existence of a unique
thermodynamic state deep within the Cayley tree which is independent of boundary
conditions. While this is quite plausible, uniqueness of the Gibbs state has been proved
so far for the RFIM only in one dimension, and only for a bivariate distribution of the
quenched field, and non-zero temperatures [14]. It seems desirable to have a direct check
of these equations by numerical simulations which do not involve making any assumptions
about the thermodynamic state.

While the procedure of the previous section treating the Bethe lattice as sites deep
inside the Cayley tree is well known and conceptually simple, it is not suited for numerical
simulations. Most of the sites of the Cayley tree are within a short distance from the surface,
and cannot be used for averaging. Since the ‘bulk’ forms a negligible fraction of all possible
sites, special care has to be taken to subtract the surface contribution. For our simulations,
we used a different technique that is computationally efficient and gets rid of surface effects
altogether. This technique has already been used to study spin systems on random graphs
by Monte Carlo simulations [15].

Our simulation algorithm involves constructing a random graph havingN sites such
that each site has exactlyz neighbours. The precise algorithm we used was as follows.
Label theN sites by integers from 1 toN . We shall assumeN is even in the following.
Connect sitei to site (i + 1) for all i. SiteN is connected to site 1. This gives us a ring
of N sites. Now, construct(z − 2) independent random pairing ofN sites intoN/2 pairs,
and add a bond for each of the paired sites. Thus, we get a graph in which each site has
coordination numberz (figure 2).

In this construction, all sites are on the same footing, and there is no ‘surface’. Unlike

Figure 2. An example of a random graph with coordination number 3. Dotted curves indicate
the random pairs.
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the Cayley tree, this graph has loops. However, it is easy to see that there are typically very
few small loops. For example, forz = 3 the probability that sitesi, (i+1) and(i+2) form
a loop of length 3 is the probability that sitei is paired with(i+ 2), and equals 1/(N − 1).
Thus the expected number of loops of size 3 in az = 3 graph ofN sites tends to 1 for large
N . Similarly, it can be shown that the expected number of loops of length 4 is two for
largeN . In general, the average number of loops of length` increases asλ` with λ = z−1
for the random graph with coordination numberz, and is a negligible fraction of all sites
that belong to any loop of length6 ` for `� logN/ logλ [16].

If the smallest loop going through a given site is of length6 (2d+1), then it follows that
up to a distanced from that site, the lattice looks like a Bethe lattice. Hence, our random
lattice would look like a Bethe lattice forz = 3 at almost all sites for a distance. log2N .
This, in turn, can be shown to imply that in the thermodynamic limitN → ∞, the free
energy per site on our lattice for classical statistical mechanical models with short-range
interactions (say nearest neighbour only) are the same as in the Bethe–Peierls approximation.

In our simulations, we usedN = 106. We used simple scanning to decide which spins
to be flipped at the next time step. The dotted curves in figures 3 and 4 show the results of a
simulation forz = 3 for quenched Gaussian random fields with mean 0 and varianceσ = 1
andσ = 3 respectively. The lower and upper halves of the hysteresis loop were obtained
separately in the simulation. Also shown in the figures are the results of equations (7),
(8). The statistical errors of the simulation are quite small. Different runs, with different
realizations of quenched fields give results which are indistinguishable at the scale of the
graph. The agreement with the theoretical calculation is excellent. For much smaller values
of disorderσ . 0.1, the hysteresis loops are very approximately rectangular. In this case,
the value of the coercive field is governed by the largest realized value of quenched local
field, which shows noticeable sample-to-sample fluctuations. As noted above, forz = 3
the hysteresis loop is smooth for all values of the disorder greater than zero: the quadratic
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Figure 3. Hysteresis loop on the Bethe lattice of coordination number 3. The case shown is
for standard deviation of quenched random fieldσ = J . The result of simulation forN = 106

spins (points) is in good agreement with our theoretical result (full curve).
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Figure 4. Hysteresis loop on the Bethe lattice forz = 3 andσ = 3J . The result of simulation
for N = 106 spins (points) is in good agreement with our theoretical result (full curve).
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Figure 5. Magnetization curves for the Bethe lattice of coordination number 4 in the increasing
field.

equation (6) has only one stable solution.
For z = 4, we do find a transition. At small disorder, the hysteresis loop has a jump:

one large event flips a large, finite fraction of the spins in the thermodynamic limit. Figure
5 shows the analytical and simulation results forσ = 1.75; there is a large jump in the
magnetization ath = 1.0037. The critical value of the disorder is very slightly larger than
this (σ (z=4)

c = 1.781 26) and above the critical disorder the hysteresis loop is smooth. The
critical field hc = 1 at the critical disorder forz = 4 and we conjecture for largerz as
well. This simple result follows from the observation that ath = 1, P = 1

2 is always a
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fixed point for equation (7) for allz: σc(z) may be determined by making this fixed point a
double root. This makes the transition a traditional saddle-node transition (the lower branch
merges with an ‘unstable’ branch of the self-consistent equation). The critical exponents
are thus the same as that for the infinite-range mean-field model (which also undergoes
a saddle-node transition in its self-consistent equation). We have checked that this same
pattern also occurs forz = 5 (where it givesσc = 2.582 01), and conjecture that it gives the
correct critical point for allz > 3; in z = 3 the coalescence between the stable and unstable
branches of theM(h) curves never occurs.

5. Discussion

It is natural to compare the zero-temperature hysteresis on the Bethe lattice with the
corresponding infinite-range mean-field result obtained in the limit of large coordination
number when the ferromagnetic coupling is taken to beJ/N , the same for all pairs of sites.
In this case the mean-field solution is given by [1]

m = erf

[
Jm+ h√

2σ 2

]
. (9)

For σ < σc =
√

2/π , the above equation has two solutionsm?`(h) andm?u(h) which are
related to each other by the symmetrym?`(−h) = −m?u(h). These correspond to the two
halves of the hysteresis loop for increasing and decreasing fields respectively.

For σ > σc, equation (9) has a single-valued real solutionm?(h) which is an odd
function of h. Thus there is no hysteresis forσ > σc. The remanence goes to zero
continuously asσ → σc from below. Forσ < σc, there is a discontinuity in magnetization
at a critical fieldhc. The value ofhc, and the magnitude of the jump in magnetization both
tend to zero continuously asσ → σc. This lack of hysteresis forσ > σc is an artefact of
the hard-spin infinite-range model: our Bethe lattice has hysteresis at all values ofσ (as
does the infinite-range model with continuous spins in a double-well potential [1]).

For z > 3 the behaviour as one approachesσc from below is similar to the infinite-range
model, and the corresponding critical exponentsβ andδ will be the same [1].

So far, we have discussed the case when the quenched random fields have an unbounded
distribution. For bounded distributions of the quenched random field, one can get jumps in
magnetization even forz = 3. Consider, for example, the case when{hi} have a uniform
rectangular distribution between−hmax and+hmax [17]. If we start with all spins down,
and increase the field slowly, clearly nothing happens forh < 3J − hmax. If h exceeds this
value, then the spin with the largest value ofhi will flip up. If hmax < J , this will make
the net local field at the neighbours positive. These spins will flip up, which in turn flips
their neighbours, etc. Thus, forhmax < J , the magnetizationm(h) jumps discontinuously
from −1 to +1, ash cross 3J − hmax†. If J < hmax < 2J , one can show that same thing
occurs as the system is, on the average, unstable for creating such a ‘nucleus’ of up spins.
However, forhmax > 2J , this particular instability is absent, and the magnetization is a
continuous function ofh. Note that the magnetization jump goesdiscontinuouslyto zero.
If the distribution of quenched fieldsp(hi) has delta functions, in addition to a continuous
part, clearly this will lead to discontinuities in them(h) curve. Any other singularities of
p(hi), say athi = α lead to singularities inm(h) for h = α ± 3J , α ± J .

An interesting open question, which we have not been able to answer so far is to
characterize all possible ‘metastable’ states on the Bethe lattice. Are all of these obtainable

† This value of the coercive field turns out to be dependent on boundary conditions, and is different if there are
some boundary spins with fewer number of neighbours.
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as solutions of self-consistent equations of the type discussed above? For example, can one
calculate the magnetization when the external field is first increased monotonically from
−∞ to a valueH1, and then reduced to a valueH2 < H1? Further study of such questions
would perhaps help our understanding of the more general question of hysteretic dynamics
of systems with many metastable states.
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