\""}], "}"}]}]}], "]"}], ",",
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1.5", "-", "1"}], ")"}],
RowBox[{"s", "^",
RowBox[{"-", "1.5"}]}]}], ",",
RowBox[{"{",
RowBox[{"s", ",", "1", ",",
RowBox[{"Max", "[", "sizes", "]"}]}], "}"}]}], "]"}]}], "]"}]], "Input",\
CellChangeTimes->{{3.797541532272624*^9, 3.797541765382495*^9}, {
3.797541827941321*^9, 3.7975418303651133`*^9}, {3.797541868308819*^9,
3.797541868520987*^9}, {3.79754299610592*^9, 3.797543026891811*^9}, {
3.797543250220811*^9, 3.797543283647546*^9}, {3.7975434550045033`*^9,
3.797543511610586*^9}, {3.798054523773102*^9, 3.7980545248275623`*^9}, {
3.798111529735936*^9, 3.7981115487117033`*^9}, {3.798111610624187*^9,
3.798111667724625*^9}},
CellLabel->
"In[104]:=",ExpressionUUID->"2518a286-8533-4cc2-9239-115bc9881849"],
Cell[TextData[{
"In Exercise 12.28 we derived the universal scaling form for the avalanche \
size distribution in the random-field Ising model. This calculation also \
applies to our pandemic model. It predicts that the probability ",
Cell[BoxData[
FormBox[
RowBox[{"P", "(", "S", ")"}], TraditionalForm]],ExpressionUUID->
"2afc64eb-d637-4d32-997a-8af7ac553e1f"],
" of an epidemic of size ",
Cell[BoxData[
FormBox["S", TraditionalForm]],ExpressionUUID->
"6f71e4b5-40db-4ffd-9d74-e1f25b028ce5"],
" for small distance ",
Cell[BoxData[
FormBox[
RowBox[{"r", "=",
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["R", "0"]}], ")"}]}], TraditionalForm]],ExpressionUUID->
"4fcaff0a-1809-4116-8a60-cbac35d01bf5"],
" below the critical point is given by \n\t\t\t\t\t",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"P", "(", "s", ")"}], " ", "=", " ",
RowBox[{"C", " ",
SuperscriptBox["S",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]],
RowBox[{"exp", "("}]}]}], TraditionalForm]],ExpressionUUID->
"05c92782-309b-4263-a530-126ca18b2e47"],
"-S ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], "/", "2"}], ")"}], TraditionalForm]],
ExpressionUUID->"23344efa-ced7-4554-8b61-5b86ab2e512f"],
", \nwhere the nonuniversal constant ",
Cell[BoxData[
FormBox["C", TraditionalForm]],ExpressionUUID->
"14d42073-bbda-4c4c-a6ee-bbfab12bfae9"],
" is around 0.4 to 0.5 (depending on the small S cutoff). Note that this is \
the predicted power law \[Tau]=3/2, but cut off above a typical size that \
grows quadratically in ",
Cell[BoxData[
FormBox[
RowBox[{"1", "/", "r"}], TraditionalForm]],ExpressionUUID->
"c34a23e4-e4ae-4f12-baec-de2ec4520e5b"],
".\n\n(g) Multiply your data and the scaling prediction by ",
Cell[BoxData[
FormBox[
SuperscriptBox["S",
RowBox[{"3", "/", "2"}]], TraditionalForm]],ExpressionUUID->
"d453e649-6992-4939-b5dc-076efb9116d5"],
" to make them near constant for small sizes (to make it easier to study the \
cutoff). Plot both on a log-log plot. Does the universal scaling function \
describe your simulated epidemic ensemble?"
}], "Text",
CellChangeTimes->{{3.7975418909252777`*^9, 3.797542026721682*^9}, {
3.797604060155629*^9, 3.7976041287702703`*^9}, {3.797605420636101*^9,
3.797605421056761*^9}, 3.798064064853788*^9, {3.798064098724338*^9,
3.798064101611075*^9}},ExpressionUUID->"4eb7e5fb-7017-491c-87ee-\
297525ad36a6"],
Cell[BoxData[{
RowBox[{
RowBox[{"sizes", "=",
RowBox[{"pandemicEnsemble", "[",
RowBox[{"10000", ",", "0.9"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"edges", ",", "counts"}], "}"}], "=",
RowBox[{"HistogramList", "[",
RowBox[{"sizes", ",",
RowBox[{"{",
RowBox[{"intLogSpace", "[",
RowBox[{"0", ",",
RowBox[{"Log10", "[",
RowBox[{"Max", "[", "sizes", "]"}], "]"}], ",", "30"}], "]"}], "}"}],
",", "\"\ \""}]}],
"}"}]}]}], "]"}], ",",
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{"...", "/.",
RowBox[{"R0", "\[Rule]", "0.9"}]}], ",",
RowBox[{"{",
RowBox[{"S", ",", "1", ",",
RowBox[{"Max", "[", "centers", "]"}]}], "}"}]}], "]"}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.7975422382337313`*^9, 3.797542288093604*^9}, {
3.7975425106281557`*^9, 3.797542566726471*^9}, {3.7975427619229193`*^9,
3.797542762068022*^9}, 3.7975435350752687`*^9, {3.797543595054669*^9,
3.797543641227441*^9}, {3.797543737404004*^9, 3.797543755166835*^9}, {
3.797543802809967*^9, 3.7975438045440207`*^9}, {3.797543860472848*^9,
3.797543862525173*^9}, {3.7975440402750998`*^9, 3.797544048481249*^9}, {
3.7975452548549013`*^9, 3.7975452646352873`*^9}, 3.7975453028290663`*^9, {
3.797933026075699*^9, 3.797933026488865*^9}, {3.797933198850604*^9,
3.797933199593416*^9}, {3.797934044263708*^9, 3.7979341570778103`*^9}, {
3.7979341890393143`*^9, 3.7979342022385387`*^9}, {3.797934267913525*^9,
3.797934300000265*^9}, {3.79793433326143*^9, 3.797934339584446*^9}, {
3.797934383657917*^9, 3.797934384339307*^9}, {3.7979344193395367`*^9,
3.797934451257401*^9}, {3.797934518312626*^9, 3.797934527326195*^9}, {
3.798054540317009*^9, 3.798054542186528*^9}, {3.798112085127665*^9,
3.798112089901079*^9}, {3.798112147427908*^9, 3.7981122395839767`*^9}, {
3.798112287580265*^9, 3.798112375371017*^9}, {3.79811297415077*^9,
3.7981129746440372`*^9}, {3.798113015220503*^9,
3.7981130469003353`*^9}},ExpressionUUID->"7338f749-8d61-4adc-8b20-\
850bdc909583"],
Cell["\<\
The tools we learn in statistical mechanics -- generating functions, \
universality, power laws, and scaling functions -- make tangible predictions \
for practical models of disease propagation. They work best in the region of \
greatest societal importance R0\[TildeTilde]1, where costly efforts to \
contain the pandemic are minimized while avoiding uncontrolled growth.\
\>", "Text",
CellChangeTimes->{{3.798064161666903*^9,
3.798064182371163*^9}},ExpressionUUID->"48d381ae-8751-4554-ba97-\
884ea80e00bf"]
}, Open ]]
}, Open ]]
},
WindowSize->{882, 820},
WindowMargins->{{439, Automatic}, {Automatic, 83}},
Magnification->1.5,
FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 153, 3, 103, "Chapter",ExpressionUUID->"1313a475-6bf6-448c-b1cc-fa917901404e"],
Cell[CellGroupData[{
Cell[758, 29, 521, 10, 162, "Subsection",ExpressionUUID->"b0ddc5c1-1308-48e8-bf63-75dca54e6973"],
Cell[1282, 41, 4043, 65, 2020, "Text",ExpressionUUID->"fe2d1bc6-73c0-49d4-afed-619cf059db0e"],
Cell[5328, 108, 2084, 38, 744, "Text",ExpressionUUID->"e0d8e6a6-979d-43f3-aabb-967fe8ece744"],
Cell[7415, 148, 1785, 49, 264, "Input",ExpressionUUID->"dc676bca-b841-4b06-af3d-ff9721e392c7"],
Cell[9203, 199, 1691, 33, 609, "Text",ExpressionUUID->"cb1ce506-617e-4154-9fd2-c57f5ec52645"],
Cell[10897, 234, 3580, 73, 1129, "Text",ExpressionUUID->"96bc9257-c971-4c73-9bd6-0c2613b679df"],
Cell[14480, 309, 1628, 37, 326, "Input",ExpressionUUID->"b35e9c11-b89d-4ff2-bafa-7e1b8fd11aac"],
Cell[16111, 348, 1398, 30, 233, "Input",ExpressionUUID->"ed578c8a-744e-433d-b3a5-f2aa6b6a828f"],
Cell[17512, 380, 1229, 23, 434, "Text",ExpressionUUID->"b667700a-56bc-4c46-9a73-37ab3b9ce6c1"],
Cell[18744, 405, 1676, 38, 450, "Input",ExpressionUUID->"8a01ad8c-5279-4ccd-8431-f6a6c0698661"],
Cell[20423, 445, 396, 9, 46, "Input",ExpressionUUID->"44babc7f-53a0-4ed2-a0c5-80c1f4676cc8"],
Cell[20822, 456, 634, 14, 109, "Input",ExpressionUUID->"8ac7940a-115c-41ef-91c7-1b146a246502"],
Cell[21459, 472, 1082, 18, 398, "Text",ExpressionUUID->"8df27af8-3167-4160-98b0-e4a21a40f2c5"],
Cell[22544, 492, 628, 17, 109, "Input",ExpressionUUID->"6dcf93cb-60ab-417a-ade2-e2eadebf2a24"],
Cell[23175, 511, 1708, 42, 202, "Input",ExpressionUUID->"2518a286-8533-4cc2-9239-115bc9881849"],
Cell[24886, 555, 2481, 63, 475, "Text",ExpressionUUID->"4eb7e5fb-7017-491c-87ee-297525ad36a6"],
Cell[27370, 620, 3197, 76, 326, "Input",ExpressionUUID->"7338f749-8d61-4adc-8b20-850bdc909583"],
Cell[30570, 698, 522, 9, 191, "Text",ExpressionUUID->"48d381ae-8751-4554-ba97-884ea80e00bf"]
}, Open ]]
}, Open ]]
}
]
*)