Skip to main content
Cornell University
LASSP -  Laboratory of Atomic and Solid State Physics

Cornell Laboratory for Atomic and Solid State Physics

Kyle Shen and Darrell Schlom Alter Electrical Propeties of Sr2RuO4 Through Strain

In the early 1970s, in the basement of Clark Hall, the Cornell team of professors David Lee and Robert Richardson, along with then-graduate student Douglas Osheroff, first observed superfluid helium-3. For that breakthrough, the catalyst for further research into low-temperature physics, the trio was awarded the 1996 Nobel Prize in physics.

Twenty years later, another Cornell-led team – working in that same building – has made an important discovery regarding the superconductor strontium ruthenate (Sr2RuO4,or SRO), often described as a crystalline analog of superfluid helium-3. What ties them together is the unusual way the electrons are paired together in SRO, and how the helium atoms are paired in the superfluid. That quality makes SRO intriguing for possible applications in quantum computation.

A team led by Kyle Shen, associate professor of physics, and Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry, both members of the Kavli Institute for Nanoscale Science at Cornell, has shown the ability to alter the electrical properties of the unique material through the application of strain – stretching thin films of SRO on top of a single-crystal substrate.

The group’s paper, “Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates,” was published May 13 in Physical Review Letters.


(a)–(d) Fermi surface maps and (e)–(h) spectral weight along the (0,ky) direction