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Observation and spectroscopy of a two-electron
Wigner molecule in an ultraclean carbon nanotube
S. Pecker1†, F. Kuemmeth2†, A. Secchi3,4‡, M. Rontani3, D. C. Ralph5,6, P. L. McEuen5,6 and S. Ilani1*

Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role.
In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of
the string. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet so far a direct measurement
of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultraclean carbon nanotube to
realize this system in a tunable potential. Using tunnelling spectroscopy we measure the addition spectra of two interacting
carriers, electrons or holes, and identify seven low-energy states characterized by their exchange symmetries. The formation
of a Wigner molecule is evident from a tenfold quenching of the fundamental excitation energy as compared with the
non-interacting value. Our ability to tune the two-carrier state in space and to study it for both electrons and holes provides an
unambiguous demonstration of this strongly interacting quantum ground state.

One of the simplest realizations of an interacting
quantum-mechanical system is that of two electrons on
a string. The behavior of this system is governed by the bal-

ance between kinetic and interaction energies. When kinetic energy
dominates, the electrons occupy particle-in-a-box levels along the
string. In contrast, when interactions dominate, aWigner-molecule
ground state is formed, in which the repulsion of the two electrons
drives them to localize at the two sides of the string1,2. Owing to
the fermionic nature of the two particles their total wavefunction
is anti-symmetric with respect to electron exchange, leading to
an intimate connection between their real-space and spin-space
behaviours. Consequently, the real-space charge separation in a
Wigner molecule goes hand in hand with a spin-space signature,
namely a pronounced quenching of its spin excitation energies3.

A carbon nanotube is an excellent system to search for the
existence of a Wigner-molecule ground state. This system is known
to have strong electron–electron interactions4–8, and can be clean
enough to allow measurements down to the single-carrier limit9,10,
made more accessible by recent technological breakthroughs11–14.
Some of these measurements showed unexplained deviations from
the expected shell-filling model, which hinted that interesting
physics occur at low electronic numbers9,11,12. Compared with iii–v
semiconductor systems15–18 in which Wigner-molecule formation
has been explored previously, in suspended nanotubes the screening
of Coulomb interactions is strongly reduced and the one-
dimensional confinement potential for electrons or holes can be
shaped with gate electrodes. This ability to control the confining
potential is critical because it allows one to distinguish between
extrinsic electrostatic effects that spatially separate the two electrons
and intrinsic separation driven by their repulsion. Furthermore,
in addition to the conventional twofold spin degeneracy in
other semiconductors, electrons in nanotubes possess a twofold
orbital degeneracy (isospin), forming a fourfold spin–isospin
subspace. Recent experiments12 have shown that the electrons’
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spin and isospin in nanotubes are easily polarized by magnetic
fields, which has been interpreted as an indication of Wigner-
crystal order. However, more recently single-particle spin–orbit
coupling has been found in this system13,19,20, which can also
preferentially align the spins and isospins in a way similar to
electron–electron interactions. In an attempt to unambiguously
identify the effects of interactions, recent theoretical works have
focused on the case of two electrons, and have demonstrated
that the role of interactions can be directly determined by
measuring the excitation spectrum21–25. Two-electron excitations
also play a key role in making quantum bits in nanotubes26.
However, because interactions may hinder qubit implementation
by suppressing Pauli-blockade physics14,21,25, experiments so far
have been performed in the non-interacting regime (due to
geometry, dielectric environment and level spacing)20,27–30. A
measurement of the excitation spectrum of two electrons in the
opposite regime of strong interactions has so far been missing,
and holds the key for determining the strongly interacting
nature of this system.

In this work we probe the addition spectrum of two carriers,
electrons or holes, confined to a nanotube quantum dot by trans-
port spectroscopy. We present data obtained from a single device
that had especially low disorder. We identify seven low-energy
quantum states that fall into two multiplets that are symmetric
or antisymmetric under particle exchange in real space. We find
that a single-particle description of the two-electron system with
spin–orbit coupling captures well the addition spectrum within
each multiplet. Interestingly, however, the energy splitting between
the twomultiplets is quenched by an order of magnitude compared
with its non-interacting value. We show that this quenching is a
direct manifestation of the formation of a Wigner-molecule state.
We demonstrate the generality of our observation and the absence
of disorder by measuring similar spectra for electrons and holes in
the same device, having opposite response to disorder potential.
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Figure 1 | Addition energy spectra of a two-electron molecular state in an ultraclean nanotube. a, Device schematic. A single ultraclean nanotube is
contacted by source (S) and drain (D) electrodes separated by 500 nm and suspended over two gate electrodes. The two gates induce a controllable
electrostatic potential along the tube, as depicted by the energy band diagram. b, Measured charge stability diagram of the device. The differential
conductance of the device, G= dI/dVsd (where I is the current and Vsd is the source–drain bias), is plotted as a function of common voltage
Vg= (Vgr+2.4Vgl)/3.4 and detuning ε= (Vgr−Vgl)/3.4 (Vgr and Vgl are the right and left gate voltages). Index pairs (n,m) denote the charge
configuration, where n (m) is the number of electrons on the left (right) side of the nanotube. c, Conductance through the nanotube measured as a function
of Vg and Vsd, around the transition between (0,1) and (1,1) configurations (circle in b). The conductance exhibits a sharp peak whenever the
electrochemical potential in one of the leads equals the energy difference between 1e and 2e states. The two parallel lines on the top left then correspond to
the 2e states and the one on the right, marked W, corresponds to the edge of the spectroscopic window. d, Similar measurement around the transition
between (0,1) and (0,2) configurations (star in b). More 2e states are observed in this case as compared with c. The visibility of excited 2e states depends
on bias direction due to asymmetric tunnel coupling to the leads (Supplementary Section S6).

Our device, used previously to study spin–orbit coupling of
one electron (1e) in a single quantum dot, is now used to study
two-electron (2e) states in amolecular regime.Weobtain essentially
identical results for two holes (Supplementary Section S5). The
device consists of a nanotube suspended above a pair of split-gate
electrodes and contacted by source and drain electrodes (Fig. 1a).
The charge stability diagram, measured as a function of the
common voltage on the gates,Vg, and their difference (detuning), ε,
(Fig. 1b) shows a rounded honeycomb structure, similar to that of a
strongly tunnel-coupled double dot. This molecular configuration
allows us to continuously transform between two different 2e
configurations: in one, the electrons are localized in different sites
near the two ends of the nanotube (the (1,1) configuration),
whereas in the other, both electrons occupy the same site (the
(0,2) configuration). Figure 1c,d shows the measurement of the 2e
addition spectra in these two configurations. For each configuration
wemeasure the differential conductance,G=dI/dVsd, as a function
of source–drain bias, Vsd, and Vg. The parallel lines observed within
these Coulomb diamonds correspond to the individual 2e excited
states. Below we will show that the different spectra, observed
in these two configurations that differ by the detuning, provide
crucial information for understanding the role of interactions in
these molecular states.

The interacting nature of two-electron states is expected to be
clearly imprinted on their detuning-dependent addition spectrum,
shown schematically for the non-interacting case in Fig. 2a, and
for the strongly interacting Wigner-molecule case in Fig. 2b. On
the left side of the figure (low detuning) the two electrons are
in the (1,1) molecular configuration, separated to the two sides
of the nanotube. On the right side, the two electrons are in the
(0,2) molecular configuration, both occupying the same side. As
detuning increases the energy of the left side with respect to that of
the right side, each state in the (1,1) configuration rises in energy,
whereas each state in the (0,2) configuration falls in energy. In
the figure we colour the 2e states according to their symmetry
with respect to electron exchange in real space: the ground state
is always symmetric in real space (red) whereas the first excited
state is anti-symmetric in real space (blue). In the non-interacting
limit and when the two electrons are on the same side (right side of
Fig. 2a) in a spatially symmetric 2e wavefunction the two electrons

can both occupy the lowest particle-in-a-box level, whereas in a
spatially antisymmetric wavefunction one electron must occupy
the next particle-in-a-box level. Thus, in the non-interacting limit
there is a large symmetric–antisymmetric splitting, ∆S−AS, equal to
the single-particle level spacing, ∆ls. The situation is very different
in the presence of strong interactions (Fig. 2b), which drive the
two electrons apart in real space. Such electronic separation has
very little effect on the antisymmetric state, where the electrons are
already separated in real space by virtue of symmetry, but it has
a marked effect on the symmetric ground state, in which in the
absence of interactions both electrons strongly overlap. Interactions
drive the density profile of the symmetric and antisymmetric
states to be essentially identical (Fig. 2b), and correspondingly,
their energy splitting becomes strongly suppressed, ∆S−AS�∆ls.
The symmetric–antisymmetric splitting, ∆S−AS, thus serves as a
quantitative measure of the interaction strength and the real-space
separation of a Wigner molecule.

The same reasoning holds regardless of whether the two elec-
trons occupy the (1,1) or (0,2) configuration. In fact, in the (1,1)
case the suppression of ∆S−AS should be even more pronounced
than for the (0,2) case. As will be shown below we indeed
measure, as in previous works15,18, suppressed ∆S−AS for the (1,1)
configuration. We note, however, that in the (1,1) configuration
each electron is near an edge, and as such it is inherently attracted
to its image charge in the metallic contact and the gate on one side
of the nanotube. This attraction creates an effective single-particle
double-dot potential along the entire suspended length of the nan-
otube. When two electrons occupy such an effective single-particle
potential, even weak interactions would lead to the formation of
an artificial Wigner molecule, where each electron sits in a dot. In
this case, the separation between the electrons is not determined
by the interactions, but simply by the distance between the dots.
To critically test the effect of interactions between the electrons we
must therefore localize them near one edge, effectively in a single
dot. Sitting in a single-dot confinement potential, their separation
is determined by their mutual repulsion. The ability to squeeze
the electrons to one side of the tube, used in this work, is thus
fundamental for pinpointing the effects of theirmutual repulsion.

To adapt the above picture to a nanotube we need to recall
that for each particle-in-a-box state along the nanotube there
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Figure 2 | Addition energy spectra predicted for two non-interacting and two strongly interacting electrons in a nanotube. a, Addition energy of the two
lowest 2e states as a function of detuning in the non-interacting limit. On the left side the electrons populate the entire nanotube ((1,1) configuration) and
on the right they are localized on one side ((0,2) configuration). Colours correspond to the symmetry of 2e states in real space (see labels). On the (0,2)
side the splitting of these states, ∆S−AS, is equal to the single-particle level spacing, ∆ls. Side insets: charge density profiles calculated for the 2e states in
the (0,2) configuration. b, The same as in a, but for the strongly interacting (Wigner molecule) limit. c, Spin–isospin states contributing to the transport
around the 1e to 2e Coulomb blockade transition, for a spatially anti-symmetric 2e state. The grey symbol is the starting 1e state and the blue symbols are
the possible states for the added electron. Spin and isospin are denoted by the thin and thick arrows. d, The same as in c, but for spatially symmetric 2e
states. e, Addition energies of the spatially anti-symmetric 2e multiplet as a function of magnetic field parallel to the tube axis, B‖. The resulting magnetic
fingerprint features a double-cross pattern, split at B‖=0 by the spin–orbit coupling, ∆so. f, The same as for e, but for the symmetric multiplet. In this case
a characteristic cusp is visible at B‖=0. g, The expected spectrum of 2e states in a nanotube at B‖=0, which should be similar either to that in a or to that
in b, depending on the strength of interactions, but should also have two copies of each line due to the spin–isospin degrees of freedom. Numbers above
the lines denote their B‖=0 degeneracy.

are four possible spin–isospin combinations, whose degeneracy is
broken by spin–orbit interactions13. Correspondingly, states of two
electrons have 4×4= 16 possible spin–isospin combinations, 6 of
them are spatially symmetric and 10 are spatially anti-symmetric
(Supplementary Section S1). Thus, each line in the schematic
diagrams of Fig. 2a,b should appear in multiple copies. However,
only some copies should be visible in transport experiments that
probe 1e–2e transitions, as illustrated in Fig. 2c,d. In all cases the
system starts with one electron in the lowest single-particle state
(grey symbol) and a second electron hops in and out, providing
a conductance signal. When the two electrons form a symmetric

state in real space they cannot occupy the same spin–isospin state
(Supplementary Section S1), leaving only the three high-lying states
for the added electron (Fig. 2d). When they form an antisymmetric
state in real space all four states are available (Fig. 2c). Thus, in total,
seven out of the sixteen 2e states should appear in transport.

A clear way to experimentally distinguish the symmetric and
antisymmetric multiplets is by their magnetic-field fingerprints. A
magnetic field parallel to the tube axis, B‖, couples to both the
orbital and spin magnetic moments of the electron (up and down
arrows in Fig. 2e–f) and shifts the energy of each spin–isospin state
with a unique slope. As was previously demonstrated13, for a single
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Figure 3 | Magnetic-dependent spectra of the two-electron molecular states at different detunings. a–c, G measured as a function of B‖ and Vg around
the 1e to 2e transition. Lines of enhanced conductance correspond to tunnelling through 2e states. a is measured in the (1,1) configuration
(ε= 35 mV,Vsd= 2 mV), c is in the (0,2) configuration (ε=83 mV,Vsd=−1.7 mV) and b corresponds to a detuning in between these configurations
(ε=65 mV,Vsd=−7 mV). For example, the vertical sweep at B‖=0 in c corresponds to a horizontal cut at Vsd=−1.7 mV in Fig. 1d. The line labelled W in
c corresponds to the similarly labelled line in Fig. 1d, representing the edge of the spectroscopic measurement window. Gate voltage is converted to relative
energy (right axis) by1E= e1Vg(Vsd/1W), where1W is the difference in gate voltage between the ground state and the W line (seen only in c). In c we
use the symbols from Fig. 2e,f to specify the spin and isospin content of each 2e state. d–f, Theoretically calculated addition energies as a function of
magnetic field for the detunings in a–c. Energies of the spatially symmetric states (red) and spatially anti-symmetric states (blue) are calculated with the
measured spin and orbital magnetic moments. The splitting between the symmetric and antisymmetric multiplets in each panel is chosen to fit the
measurement.

electron this results in a characteristic double-cross structure, split
at B‖ = 0 by spin–orbit coupling, ∆so. For two electrons in the
non-interacting framework the addition spectrum measured by
transport amounts to the energy of the added electron, resulting
again in simple fingerprints: in the 2e antisymmetric multiplet
the added electron can populate all four spin–isospin states and
thus the corresponding addition energies will have a double-cross
pattern (Fig. 2e) identical to that of a single electron. In the 2e
symmetric multiplet the lowest state is forbidden, leading to a
double-cross without the lowest line (Fig. 2f), having a distinctive
cusp at B‖ = 0. We note that the isospin degree of freedom,
associated with the motion around the nanotube circumference,
involves large energy scales (subband splitting) and is therefore
hardly affected by interactions. Thus, the magnetic dependence of
the multiplets, derived above in the non-interacting framework,
remains a good description also in the presence of interactions. In
contrast, the energy scale of the longitudinal degree of freedom is
relatively small, and hence the splitting between the multiplets is

sensitive to interactions. Depending on the strength of interactions,
the multiplets should evolve as a function of detuning, either as
the non-interacting case (Fig. 2a) or as the strongly interacting case
(Fig. 2b), only that now even at B‖= 0 we should see two copies of
each line, split by∆so (Fig. 2g). Using the above identification tools
we can proceed to experimentally study the 2e states. We start by
measuring their dependence on B‖ at three different detunings: in
the (1,1) configuration (Fig. 3a), the (0,2) configuration (Fig. 3c)
and at the crossover between them (Fig. 3b). In all figures we plot
the differential conductance, measured at a finite Vsd, as a function
of B‖ and Vg (converted to energy on the right axis). Each line of
enhanced conductance arises from a 2e state, giving directly the
magnetic-field dependence of the 2e addition spectrum. Looking
first at the (1,1) configuration (Fig. 3a) we identify four lines, two
with positive slopes and two with negative slopes. Notably, the
magnetic moments and the zero-field splitting (0.34±0.01meV at
B‖=0) in this 2e spectrum are identical to those in the one-electron
double-cross spectrum we reported earlier13, showing that the
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observed splitting is due to spin–orbit coupling (Supplementary
Fig. S3). This allows us to clearly identify the spin and isospin
quantum numbers of each state. At higher detuning (Fig. 3b) we
observe additional states, most apparent as a cusp at B‖= 0. Finally,
at even higher detuning in the (0,2) configuration (Fig. 3c), the
double-cross (visible at ∼1meV above the ground state) remains
the strongest feature, while the additionalmultiplet with a zero-field
cusp fully emerges at low energies.

The measured magnetic fingerprints (Fig. 3a–c) show remark-
able similarity to the predicted ones (Fig. 3d–f) based on the non-
interacting theory (Fig. 2e–f). The low-energy, cusped multiplet
observed at high detuning (Fig. 3c) can thus be identified with
the symmetric multiplet (red lines, Fig. 3f), and the double-cross
at higher energies with the antisymmetric multiplet (blue lines,
Fig. 3f). Experimentally, we observe one additional cross between
the multiplets (Fig. 3c, at∼0.6meV above the ground state), which
we associate with inter-valley backscattering processes (Supple-
mentary Section S4). However, apart from it, the non-interacting
framework quantitatively describes the entire structure within each
multiplet. With decreasing detuning, the splitting between the
multiplets decreases (Fig. 3b), until they fully overlap in the (1,1)
configuration (Fig. 3a).We observe a spectrum identical in all of the
above details for two holes (Supplementary Fig. S5), demonstrating
that all of these observations are generic.

The crucial role played by interactions is unravelled when
we measure the detuning dependence of the addition spectrum
(Fig. 4a). This figure plots the conductance at B‖ = 0 as a function
of ε and Vg (converted to energy on the right axis). The lowest line
corresponds to the 2e ground state. A parallel line, at energy eVsd
above it (labelled W), arises from the width of our spectroscopic
window set by Vsd =−2mV. The lines in between correspond to
excited 2e states. These lines are visible in this figure mostly at
high detuning due to asymmetric coupling to the leads, whereas
measurements at opposite Vsd (Supplementary Fig. S6) reveal
their complementary dependence at low detuning, and the dashed

guiding lines fit the data from both. By associating each state with
its magnetic fingerprint in Fig. 3 we identify the pair of symmetric
lines (red dashed), the pair of antisymmetric lines (blue dashed)
and the single line in between (due to inter-valley backscattering,
Supplementary Section S4). Notably all of the lines evolve from
an up-going slope at low detuning to a down-going slope at high
detuning, clearly indicating that all of them completely evolve from
the (1,1) to the (0,2) configuration. The spectrum measured at
high detuning shown in Fig. 3c is thus a direct observation of the
addition spectrum of two electrons in a single dot (similarly for two
holes in Supplementary Fig. S5). As explained above, in the absence
of interactions, the splitting between symmetric and antisymmetric
states should amount to the single-particle level spacing, ∆ls. In
Supplementary Section S2 we directly extract this single-particle
spacing frommeasurements of the 1e addition spectrum to be∆ls=

7.8±0.1meV and show that the confining potential of one electron
approximates well that of two electrons. Remarkably, if we compare
this spacing with the symmetric to antisymmetric splitting in the 2e
spectra we see that this 2e excitation energy is quenched by almost
an order ofmagnitude comparedwith its non-interacting value.

The pronounced quenching of the symmetric–antisymmetric
excitation energy as compared with the non-interacting picture
attests to the effect of strong electron–electron interactions.
To better understand the role of interactions we performed
an exact-diagonalization calculation31 of the excitation spectrum
(Supplementary Section S7) corresponding to the parameters of our
2e dot, as a function of the dimensionless interaction strength rs=
d/a∗B, where a

∗

B is the effective Bohr radius and d is the length scale of
the harmonic oscillator potential. Without interactions (rs= 0) the
ground state is of the symmetric multiplet, and the antisymmetric
multiplet is higher in energy by ∆ls = 7.8meV. With increasing rs,
the antisymmetric states drop in energy, becoming degenerate with
the symmetric states for large rs. In this limit the two electrons form
a Wigner molecule, the transition to this state being continuous
owing to the one-dimensionality and small number of electrons.
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Our experimental observation of a tenfold quenching corresponds
to the rs = 1.64 case (arrow, Fig. 4b). As explained above, the
quenching follows from the spatial separation of the two electrons.
This becomes apparent by comparing the calculated electronic
charge-density profiles along the nanotube in both multiplets for
the non-interacting (Fig. 4c) and interacting (Fig. 4d) cases. Indeed,
the density profiles calculated for the observed quenching are
nearly identical for the two multiplets, demonstrating the strongly
interacting nature of this two-electronWignermolecule.

In summary, using transport spectroscopy of ultraclean nan-
otube quantum dots we measure directly the addition spectrum of
two interacting electrons or holes. By tuning the one-dimensional
confinement potential we go between a state where the electrons are
artificially separated by the confining potential to one where their
separation is determined solely by their interactions. In the latter
case we observe seven quantum states, grouped into two multiplets
according to spin–isospin symmetry. The magnetic fingerprint
within each multiplet is reproduced by the non-interacting picture.
Remarkably, however, the fundamental excitation involving a
change in symmetry ismarkedly quenched in energy comparedwith
its non-interacting value. Using exact-diagonalization calculations
we demonstrate that such quenching is a fundamental signature
of a strongly interacting Wigner molecule, in which electrons are
spatially separated by their mutual repulsion. The spectroscopy of
the nanotube Wigner molecule, provided here for the first time,
directly shows that suspended carbon nanotubes can host strongly
interacting ground states and opens the way for studies of a wider
variety of strongly interacting multi-electron states predicted to
exist in one-dimensional systems.

Methods
Devices were fabricated from degenerately doped silicon-on-insulator wafers, with
a 1.5-µm-thick device layer on top of a 2-µm buried oxide. Using dry etching and
thermal oxidation (thickness 100 nm) we isolated two electrically independent
mesas from the device layer that served as bottom gates to the nanotube. Gate
contacts (2/50 nm Ti/Pt), source and drain electrodes (5/25 nm Cr/Pt) and catalyst
pads were patterned using electron-beam lithography. Nanotubes were grown
after completing all patterning to produce clean devices. All measurements were
performed in a dilution refrigerator with a base temperature of T = 30mK.
The electron temperature extracted from the width of the Coulomb peaks was
100–200mK. The conductance was measured using standard lock-in techniques
with small excitations (typically 4–10 µV).
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