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 Symmetries of two-electron states in carbon nanotubes S1.

Electronic wavefunctions in carbon NTs consist of three components: a real-space 

component along the tube, a spin component, and an ‘isospin’ component related to the 

clockwise or counter-clockwise motion of the electron around the tube’s circumference†. 

Although the isospin is formally also a spatial degree of freedom, energetically it is well 

decoupled from the spatial component along the tube and is in fact strongly coupled to 

the spin degree of freedom via spin-orbit coupling. Thus, the total wavefunction is 

naturally decomposed into a spatial and a spin-isospin components:  

(                        . For a single electron, for each particle-in-a-box level in 

real space there are four possible spin-isospin combinations. Correspondingly, for two 

electrons there are         spin-isospin combinations. In this section we show how 

these states fall into multiplets with distinct symmetries and highlight which of these 

states should be visible in tunneling spectroscopy. 

Since the total wavefunction of two electrons has to be anti-symmetric under exchange 

of electrons, the behavior in the spatial and the spin-isospin subspaces is anti-correlated: 

If the wave function is symmetric (S) in real space it must be anti-symmetric (-) in spin-

isospin space. Similarly, if it is anti-symmetric (AS) in real space, it has to be symmetric 

(+) in spin-isospin space. Note that throughout the main text we refer to the 2e states 

through their symmetry in real space (S or AS), since this is the degree of freedom that 

naturally couples to Coulomb interactions. 

The breakdown of the 16 two-electron spin-isospin combinations according to their 

symmetries is as follows: To form a ‘singlet-like’ (-) state in spin-isospin subspace we 

can combine a singlet in spin with a triplet in isospin and vice versa, yielding in total 

           states. To form a ‘triplet-like’ (+) state in spin-isospin subspace we 

can combine a spin triplet state with an isospin triplet state or a spin singlet state with an 

isospin singlet state, giving in total            states. 

                                                 
† We note that both the spin and isospin degrees of freedom couple to a magnetic field, and in this work 

we use the terms “spin” and “isopin” to refer to the spin and isospin magnetic moments (which are the 
observables in our experiments) opposed to the angular momenta (which strictly speaking cease to be good 
quantum numbers in the presence of spin-orbit coupling and K-K’ scattering). 
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To define more specifically these different states we denote the isospin of each 

electron by   (  ) and its spin by   ( ), where the spin quantization is along the tube 

axis. One-electron states then read as |  ⟩, |   ⟩, |  ⟩, and |   ⟩, while the non-

symmetrized two-electron states read as |  ⟩ |   ⟩ , |   ⟩ |   ⟩ , etc., where the 

index refers to the first and second electron. After symmetrization or anti-symmetrization 

the relevant states become, for example:  

|     ⟩    
√ 
 |  ⟩ |   ⟩   |   ⟩ |  ⟩   

In the absence of spin-orbit coupling and electron-electron interactions all the states 

within the (+) or (-) multiplets are degenerate. However, in the presence of spin-orbit 

interactions the states split according to the relative alignment of the electrons' spin and 

isospin. For two electrons there are three different energetic configurations: If both 

electrons have parallel spin and isospin the energy is      , if one has parallel alignment 

and another antiparallel alignment than the energy is zero, and if both are antiparallel 

than the energy is     (where we assumed that the sign of the spin-orbit interactions 

prefers parallel alignment of spin and isospin) (see Fig. 3 in Ref. 1). 

In transport experiments that probe the 1e to 2e transition, only 7 out of the 16 states 

are visible due to selection rules imposed by sequential tunneling. Assuming that a single 

electron initially occupies the ground state |  ⟩, a second electron can be added to any 

of the four spin-isospin states if the total wavefunction is spatially anti-symmetric, but 

can only occupy the other three spin-isospin states if it is spatially symmetric, namely: 

 Spatially Spatially 
 Anti-Symmetric Symmetric 

|  ⟩  |  ⟩  |    ⟩ 

|  ⟩  |   ⟩  |     ⟩        |     ⟩ 

|  ⟩  |  ⟩  |    ⟩         |    ⟩ 

|  ⟩  |   ⟩  |     ⟩        |     ⟩  

In comparison, transitions such as |  ⟩  |    ⟩ are not allowed, as they involve a 

change in the spin or isospin of both electrons simultaneously. Thus, if transport starts 
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from one electron in the ground states then there are four anti-symmetric and three 

symmetric possible end states. The counting is summarized in table S1. 

Table S1 Counting the two-electron states according to their symmetries in real space. 

 Direct measurement of the single-particle level spacing S2.

In order to estimate the effect of interactions in our two-electron system, we compare 

in the main text the splitting between the symmetric and anti-symmetric multiplets, 

     , with the single-particle level spacing of the right dot,    . In this section we 

demonstrate how this level spacing is directly determined from the excitation spectrum of 

a single electron. We also show that the change in the confining potential of one and two 

electrons is negligible. 

Figure S1a shows the conductance,  , measured as a function of gate voltage,   , and 

source-drain bias,    , at the             transition at       . This measurement 

directly reflects the energy spectrum of a single electron in the right dot. Three pairs of 

excitation lines, apparent as lines of high conductance, are visible: A low-energy pair 

(labeled      ) a pair at intermediate energies (labeled       ) and a pair at high 

energies, whose splitting is barely visible (labeled      ). The states             can be 

directly associated with the four spin-isospin states of the lowest particle-in-a-box level. 

In fact, their energies perfectly fit the magnetic-field dependence of the states, shown as 

an orange double-cross in Fig. S1b: The lowest states correspond to |  ⟩ and |  ⟩ and 

their extracted splitting,                , matches well the expected splitting: 

                          (s is the spin contribution to the magnetic 

moment). States of opposite isospin are split by the magnetic field by        
              (     is the orbital contribution to the magnetic moment) matching 

the observed splitting between the         pair and the         pair. Finally, the high-

energy pair of    states is expected to be split by                           , 

Real Space Spin    Isospin Total Should appear in 
transport 

Symmetric - 6 3 

Anti-Symmetric + 10 4 
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also faintly observed in the measurement. This clearly demonstrates that the four 

excitations             are the four spin-isospin states of a single electron in the lowest 

particle-in-a-box level. 

The remaining pair of lines at intermediate energies         are separated from the 

low-energy pair by       
 
 (       )  

 
 (       )                , 

and so their isospin must be parallel to the field    . This pair must then correspond to 

the first excited level, which for a single electron corresponds to the second particle-in-a-

box state. Its corresponding magnetic field dependence is shown in purple in Fig S1b. 

Specifically we see that the splitting between the states      ,                 fits 

well the predicted one                 . 

  

Figure S1: Measurement of the single particle level spacing of the right dot. a. One-electron excitation 
spectrum at the transition (0,0)-(0,1). Conductance G is plotted as a function of gate voltage     and source-drain bias 
    at magnetic field        featuring parallel lines corresponding to 1e excitations. b. Predicted magnetic-field 
dependence of the 1e spectrum allowing identification of excitation in a. Spin (green) and isospin (magenta) are 
illustrated by up- and down-pointing arrows. States of the first (second) particle-in-a-box state appear in orange 
(purple). 

Having identified all the states, we can unambiguously determine the single-particle 

level spacing of the right dot from the energy difference between the         and 

         pairs. The level spacing is thus            . 

In the main text we compare the level spacing, obtained from the measurement of the 

energy spectrum of a single electron, with       for two electrons. For this comparison 

to be valid, it is important to verify that the confinement potential shape is not modified 
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considerably when going from one to two electrons in the dot. This is demonstrated 

below. Figure S2 presents the conductance,  , measured as a function of gate voltage,   , 
and source-drain bias,    , at          for the first three electrons occupying the right 

dot (the left remains in the gap). One property of the dot that can change with adding a 

second electron is its charging energy. By extrapolating the Coulomb blockade diamonds 

slopes, one extracts a charging energy of         for the first electron and   
      for the second electron, a small reduction by only 21%. We note that this 

reduction is mostly due to a change in the capacitance to the leads, while the capacitance 

to the gate, which is inversely proportional to the Coulomb diamond width, remains 

unchanged up to 5%. Since the single-particle level spacing is proportional to the length 

of the dot, similar to the capacitance to the gate, we conclude that the 1e value provides a 

good estimate.  

 

Figure S2: Distortion of the right dot by charging. Conductance G is plotted as a function of gate voltage     and 
source-drain bias     at magnetic field         . The capacitance of the dot to the gate,   ,  related to the horizontal 
extent of the Coulomb blockade diamonds,    , by          is seen to remain constant for one and two electrons. 
The charging energy, extracted from the vertical extent of the Coulomb blockade diamonds, is reduced by 21% for the 
second electron. 

 

 Comparison of one-electron and two-electron addition spectra. S3.

In the main text we classify the 2e states by their symmetry properties according to 

magnetic-field fingerprints based on the single-particle magnetic properties (Fig. 3). In 

this section we quantitatively compare the 1e spectrum (Fig. S3a) reported before2 and 
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the 2e spectrum at the transition to the (1,1) configuration (Fig. S3b, duplicating Fig. 3a 

in the main text). The two spectra are found to be practically identical, supporting the use 

of single-particle magnetic properties in the main text. 

 

Figure S3: Comparison of one-electron and two-electron addition spectra. a, One-electron and b, Two-electron 
magnetic-field dependence of the addition spectrum: G is plotted as a function of     and    at finite bias (    
                                   . Lines of enhanced conductance correspond to tunneling via 1e (a) and 2e 
(b) states. Panel b reproduces Fig. 3a of the main text. 

We start by comparing the magnetic moments in the two spectra. From the 2e 

spectrum we extract               and               for the lower and upper 

crosses respectively. The average moment corresponds to the orbital contribution to the 

moment,                , whereas the difference corresponds to Zeeman splitting, 

giving the gyromagnetic factor          , both in good agreement with 1e moments 

reported before                      . This allows us to attribute the splitting at 

     to spin-orbit coupling, which measures to be                  , in 

excellent agreement with the 1e spin-orbit coupling                  . 

 Inter-valley Coulomb interactions in the observed addition spectrum S4.

The measured addition spectra of two electrons (Fig. 3c) or two holes (Fig. S5a) in a 

single dot, feature two more lines in addition to the seven states described in the main 

text. In this section we show how interactions, combined with long-lived excited states, 

may lead to the two extra lines that are not captured by the non-interacting picture. This 

section starts by describing the effect of inter-valley Coulomb interactions on the 
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complete two-electron addition spectrum. We then describe how all the lines in the 

measured spectra can be accounted for by non-equilibrium transport. 

We define as inter-valley backscattering (VBS) the Coulomb-interaction process that 

exchanges the isospins of two interacting electrons (or holes) having opposite isospins. 

We first note that the effect of VBS is generally small with respect to forward scattering, 

i.e. Coulomb-interaction processes which do not involve valley exchange, such as inter-

valley Hartree-like interactions and all kinds of intra-valley interactions. This allows us to 

treat VBS within first-order perturbation theory. Forward scattering and quantum 

confinement then determine the energy splitting between the symmetric and anti-

symmetric multiplets, as described in the main text, whereas VBS and spin-orbit 

interaction determine the splitting within each multiplet, as we describe below. Second, 

qualitatively speaking, the effect of VBS scattering is short ranged, since it involves large 

momentum transfer between the scattered particles. It therefore has negligible effect on 

the spatially anti-symmetric multiplet, where the two electrons have small probability to 

be one close to the other along the nanotube axis. 

By including the effect of VBS in our exact-diagonalization calculation we obtain the 

2e spatially symmetric spectrum presented in Fig. S4b. The calculation shows two main 

differences compared to the non-interacting spectrum (Fig. S4a): First, the four-fold 

degeneracy of the central line at      is broken by     . Second, the apparent spin-

orbit gap is enhanced          √          . The magnetic fingerprint of the 

symmetric multiplet is therefore slightly altered by interactions. 
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Figure S4 Predicted effect of inter-valley backward scattering on the spatially symmetric 2e excitation 
spectrum. a. Schematic energy spectrum of symmetric 2e states as a function of    in the non-interacting picture. The 
states are split at      by spin-orbit coupling    . b. same as a in the presence of inter-valley backward scattering. 

The four-fold degeneracy as      is lifted by      and     is replaced by      √          . 

Whereas VBS leads to energy shifts in the 2e spectrum, interactions alone do not fully 

account for the measured spectrum. As long as transport starts and ends with a single 

electron occupying the ground state of the dot, as described in the main text, it leads to 7 

spectroscopic lines. However, additional lines would appear if the starting electron 

occupied instead a metastable state having a long lifetime. A natural candidate for such a 

metastable state is |   ⟩, which has spin and isospin opposite to the ground state |  ⟩ 
leading to long expected relaxation times. Table S2 lists all the processes starting in the 

|   ⟩ state and ending in spatially symmetric 2e states, along with their corresponding 

addition energies in both the non-interacting and interacting cases. The table enumerates 

three additional 2e states that are now accessible, two of which (lines 4-5 in the table) 

result in extra lines in the spectrum, whereas the last one does not appear in the transport 

as it lies in the Coulomb-blockaded region (addition energies listed in Table S2 should 

not be confused with 2e energies plotted in Fig. S4). 

The measured spectra fully agree with the above picture and from them we extract 

                   for the 2e molecule, in agreement with the enhanced      
        , and                    for the 2h molecule, in agreement with 

             . It is interesting to note, however, that whereas the calculations agree 

qualitatively with the data and its symmetries, they yield      smaller by an order of 
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magnitude and opposite in sign compared to the value extracted from the experiment. 

This remaining puzzle is a challenge for future theories trying to understand the finer 

effects of interactions in this system. 

# Initial 1e state Final 2e 
state 

Addition energy Appears in 
transport? Non-

Interacting 
VBS induced 

shift 
1 |  ⟩ 

(ground state) 

|     ⟩                Yes 
2 |    ⟩        Yes 
3 |     ⟩            Yes 
4 

|   ⟩ 
(metastable) 

|     ⟩           Yes 
5 |      ⟩       0 Yes 

6 |     ⟩               No (In  
blockaded region) 

Table S2 Spectroscopic lines of the spatially symmetric multiplet taking into account the metastable state 
|   ⟩ and backward scattering. Lines 1-3 correspond to the three lines discussed in the main text. Lines 4-6 
correspond to three additional lines. Lines 1-5 lie within the spectroscopic window and thus appear in transport. 

 

 Addition spectrum and detuning dependence of two holes in a single dot. S5.

In the main text we present spectroscopic evidence for the formation of a 2e Wigner-

molecule state. In this section we present the detuning dependence and magnetic-field 

dependence of 2h states, both remarkably similar in all aspects to the 2e data. This 

demonstrates that all the observations presented for electrons in the main paper are in fact 

generic and do not depend on details such as the charge of the carriers, disorder, and the 

strength or sign of spin-orbit coupling. 
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Figure S5: Addition spectrum of a two-hole Wigner molecule. a. Magnetic-field depedent spectrum in the (2h,0) 
configuration. G is plotted as a function of    and   .                       b. Detuning dependence of the 
spectrum at      and         . Dashed lines in a and b – guides to the eye following the spatially anti-
symmetric (blue) and symmetric (red) multiplets and the spectroscopic window (black, W). The inter-multiplet splitting 
      is extracted from a.  

Figure S5a presents the magnetic-field dependent 2h addition spectrum at the 

transition              . The conductance measured with             is plotted 

as a function of    and     (converted to energy on the right y-axis). The lines are 

matched with the magnetic-field fingerprints: The cusp at      and the cross above it 

are identified with the 2h symmetric multiplet, whereas the top-most double-cross is 

identified with the anti-symmetric multiplet. The remaining line is due to inter-valley 

interactions, as described in section S4 above. The data compares very well to the 1h 

magnetic-field dependence reported before2: The slopes match the 1h magnetic moments, 

and the      splitting agrees in sign and magnitude with the 1h spin-orbit coupling 

(                  in the symmetric multiplet and                   in the 

anti-symmetric). Finally, the avoided crossing between the |    ⟩ and |     ⟩ 
states seen in both multiplets at           matches the 1h disorder-induced valley 

mixing               . 

Figure S5b presents the detuning-dependent addition spectrum at the 1h–2h transition. 

The conductance is plotted as a function of     (converted to energy on the right y-axis) 

and   at      and          . Five lines are seen within the spectroscopic window 

NATURE PHYSICS | www.nature.com/naturephysics	 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS2692

www.nature.com/doifinder/10.1038/nphys2692


12 
 

(labeled W). From their magnetic-field dependence we identify the two bottom-most 

lines as the symmetric multiplet and the two top-most lines as the anti-symmetric 

multiplet, while the remaining line is a result of inter-valley interactions (see S4). Both 

multiplets undergo a transition from the (1h,1h) charge configuration (up-going slope) to 

the (2h,0) configuration (down-going slope) as a function of detuning. The 2h spectrum 

presented in Fig. S5a (measured at         ) therefore corresponds to two holes in a 

single dot. Similar to the (0,2e) configuration, the multiplet splitting in the (2h,0) 

configuration, measured to be      
                    , is quenched by an order of 

magnitude with respect to the single-particle level spacing measured in the (1h,0) 

configuration2    
             . 

We conclude that the 2h system presents quenching of the inter-multiplet splitting, 

similar to that of the 2e system, even though the two systems differ considerably in spin-

orbit coupling (holes feature half as strong coupling of opposite sign compared to 

electrons, favoring anti-parallel spin and isospin compared to parallel in electrons) and in 

disorder-induced valley mixing (holes feature twice as strong mixing), have opposite 

charges, and sit in different dots. This supports that the formation of a Wigner-molecule 

state, manifested by the inter-multiplet excitation energy quenching, is indeed a generic 

phenomenon which does not depend on the above details of the system. 

 The complete detuning dependence of excited-state spectra from positive and S6.

negative bias measurements. 

Due to asymmetric coupling of the dot to the two leads, transport via excited states 

may appear stronger or weaker depending on the bias direction. In general, transport via 

excited states that have a strong tunneling barrier to the drain (source) is more visible for 

positive (negative) bias. Therefore the process                   is more visible in 

positive bias (Fig. 1c) while                   is more visible in negative bias (Fig. 

1d).  The detuning-dependent spectrum presented in the main text (Fig. S6a, duplicating 

Fig. 4a in the main text) was measured at negative bias, and its low-detuning excitations 

are thus very faint. However, the missing lines appear clearly at positive bias (Fig. S6b), 

and the spectrum is seen to continuously evolve with detuning. This is demonstrated by 
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plotting the same dashed guidelines on top of the two spectra, taking into account gating 

effects induced by the opposite source-drain bias. 

 

Figure S6: Complete detuning dependence of the 2e addition spectrum. a. Measurement at negative bias 
          (duplicating Fig. 4a in the main text) G is plotted as a function of   and    (converted to energy on the 
right y-axis). b. same as a with           showing the low-detuning part of the spectrum that is missing on a. 
Identical guidelines are plotted on top of the two measured spectra, following the symmetric (red) and anti-symmetric 
(blue) multiplets and the spectroscopic window (black, W). The guidelines are shifted by          and    
       due to gating by the source-drain bias. 

 Exact diagonalization S7.

 In the main text we show the evolution with rs of two-electron excitation energies in a 

NT quantum dot (Fig. 4b), together with selected charge-density profiles (Figs. 4c and 

4d). These results are obtained by means of the exact-diagonalization method, also 

known as full configuration interaction. In this section we briefly review the key steps of 

the calculation. An overview of the method is reported in Ref. 3 and full details on its 

application to carbon NTs are provided in Ref. 4. With respect to Ref. 4, here we have 

improved our treatment of VBS interaction.  

Since the quantum-dot confinement potential is soft, being induced by electric gates, 

its generic low-energy dependence on the NT-axis coordinate x is quadratic. Therefore, 

within the envelope-function and effective-mass approximation, the one-electron 

wavefunction ),( srn


  may be written as 

),()()()()(),( srsrxAFsr nnn   
  
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where A is a normalization constant, )(xFn  is the envelope-function nth eigenstate of the 

one-dimensional harmonic oscillator (n = 0,1,2,), slowly varying with respect to the 

graphene lattice constant, )(s  is the electron spinor (with 1  being equal to the 

third component of spin, in units of 2/ ), and )(r  is the bulk Bloch state whose wave 

vector is located at the bottom of conduction-band valley  in reciprocal space (valley   

if 1 , valley    if 1 , the quantum number   being the isospin). The one-

electron energy En is 

  ,2/2/1 so0  BBnE orbsn    

where the harmonic-oscillator energy quantum 8.70   meV is equal to the observed 

level spacing ls.  

Using ),( srn


  as one-electron basis set, the interacting Hamiltonian Ĥ  in second-

quantization acquires the form  

.ˆˆˆˆ
BWFWSP VVHH   

The single-particle term SPĤ  is 

,ˆˆˆ  



n

nnnSP ccEH  

where the fermionic operator 
nĉ ( nĉ ) creates (destroys) an electron with spin  and 

isospin  in the nth level of the harmonic oscillator. The forward-scattering (FS) term 

  
'''''' ''

''''''''''
''

'''''' ˆˆˆˆ
2
1ˆ

nnnn
nnnnnnnnFS ccccVV




  

includes all intra-valley scattering processes due to Coulomb interaction as well as 

Hartree-like inter-valley scattering terms. The FS matrix element  

)()'()'()'()(' ''''''
*

''
*''

'''''' rrrrUrrrdrdV nnnnnnnn



     
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depends on the static dielectric constant r of the electrostatic environment, here treated 

as a free parameter, through the so-called Ohno potential,  

,
'/

)'(
222

0
4

2

rrUe

errU
r








 

which interpolates the two limits of Coulomb-like long range and Hubbard-like short 

range interactions (with Hubbard pz-site parameter U0 = 15 eV). The six-dimensional 

integral  ''
'''''' nnnnV  is evaluated by neglecting the overlap of pz orbitals on different sites and 

using the slow variation in space of the envelope function Fn(x).  

Backward interactions are included in the term  

,ˆˆˆˆ
2
1ˆ

'''''' '
''''''''''''''  





nnnn

nnnnnnnnVBS ccccVV





 

which exchanges the valleys of two scattering electrons when they have opposite 

isospins, otherwise it has no effect. The evaluation of VBS matrix elements  

)()'()'()'()(' '''''
*
'

*
'''''' rrrrUrrrdrdV nnnnnnnn




  
  

 

lies outside the range of applicability of the standard envelope-function theory. We will 

show elsewhere that such matrix elements contain the short-range part of interaction, 

weakly depend on the unknown NT chirality, and are smaller by orders of magnitude 

than FS matrix elements. On the other hand, FS matrix elements depend only on 

macroscopic NT parameters such as the radius R, which is deduced by the measured 

value of orb.   

We exactly diagonalize the FS Hamiltonian  

,ˆˆ
FSSP VH 
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which is a matrix in the Fock space of Slater determinants |i > that are obtained by 

filling with two electrons in all possible ways the lowest 50 one-electron orbitals n(r) 

(two-fold spin degenerate at B = 0). Both ground and excited two-electron states, |n >, 

expanded on the basis of Slater determinants, 

, 
i

i
n
in c

 

are obtained numerically, together with their energies, by means of the parallel home-

built code DonRodrigo. The diagonalization proceeds in each Hilbert-space sector 

labeled by the total spin component along the NT axis, total isospin, and parity under 

mirror reflection with respect to a plane perpendicular to the NT axis, placed in the 

middle of the quantum dot. The effect of VBS terms on eigenstates |n > of FS 

Hamiltonian is considered at the level of first-order degenerate perturbation theory. 

The code output (i.e., the expansion coefficients ci) is post-processed in order to obtain 

the charge density (x) for the nth excited state at given rs, 

.ˆˆ)()()( '''
''

**   

ij
immm

mm
mj

n
j

n
i ccxFxFccx 




 

The density parameter rs is estimated as the ratio of the characteristic harmonic oscillator 

length to the effective Bohr radius aB*, 
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where the electron effective mass m* is obtained through the formula 

,
3

*
2

R
m 


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with  = 0.54 eV nm  being the graphene -band parameter.
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