Visualizing protein-DNA interactions at the single-molecule level with DNA curtains

Our group uses single-molecule optical microscopy to study fundamental interactions between proteins and nucleic acids. Our overall goal is to reveal the molecular mechanisms that cells use to repair, maintain, and decode their genetic information. This research combines aspects of biochemistry, physics, and nanoscale technology to answer questions about complex biological problems that simply cannot be addressed through traditional biochemical approaches. The advantages of our approaches are that we can actually see what proteins are bound to DNA, where they are bound, how they move, and how they influence other components of the system—all in real-time, at the level of a single reaction. We are particularly interested in determining the physical basis for the mechanisms that proteins use to survey DNA molecules for damage and initiate repair processes, and how these initial steps are coordinated with downstream events that lead to completion of repair. As part of our work, we are also actively pursuing the development of novel experimental tools that can be used to facilitate the study of single biochemical reactions. We are applying techniques derived from nanotechnology to our biological research, and using nano- and micro-scale engineering to facilitate the development of new, robust experimental platforms that enable "high throughput" single molecule imaging.

Host: Lucy Brennan <lgb74@cornell.edu>

Biophysics Colloquium chair: Ailong Ke <ak425@cornell.edu>
Biophysics Colloquia website: http://www.biophysics.cornell.edu/seminars/colloquia_s2014.html
The Cornell Biophysics Colloquium is supported by generous contributions from Cornell departments and units: Nanobiotechnology Center, Chemistry & Chemical Biology, Applied & Engineering Physics, Biomedical Science, Physics, Molecular Biology and Genetics, Biomedical Engineering Program, CHESS, Molecular Medicine, Laboratory of Atomic and Solid State Physics, Vice Provost for Life Sciences, Vice Provost for Research, College of Engineering, College of Agriculture and Life Sciences, and the College of Veterinary Medicine.