Huse, Henley, and Fisher Respond: Here we show how the exponents $\zeta = \frac{4}{7}$ for the transverse fluctuations in interface position and $\chi = \frac{1}{7}$ for the fluctuations in the free energy can be derived exactly for an interface in a random potential in two dimensions at any temperature. We do this by relating the problem of the interface to the damped Burgers’s equation1 in one dimension with random forcing, the scaling behavior of which has been analyzed by Forster, Nelson, and Stephen2.

In the continuum limit with Hamiltonian3

$$ H = \int dx \left[\frac{1}{2} \sigma (\partial y/\partial x)^2 + V(x,y) \right], $$

(1)

the weight $W(x,y)$ of a path or interface ending at (x,y) satisfies the equation

$$ \frac{\partial W(x,y)}{\partial x} = \frac{k_B T}{2\sigma} \frac{\partial^2 W(x,y)}{\partial y^2} + \frac{1}{k_B T} V(x,y) W(x,y), $$

(2)

where σ is the interface stiffness, $y(x)$ is the location of the interface, and the correlations in the random potential are

$$ \langle V(x,y)V(x',y') \rangle = \Delta \delta(x-x') \delta(y-y'). $$

This is the continuum version of Kardar’s4 recursion relation for the weights in the lattice solid-on-solid (SOS) model. If we define $u(x,y) = \partial F(x,y)/\partial y$, where the free energy is $F(x,y) = -k_B T \ln W(x,y)$, Eq. (2) becomes

$$ \frac{\partial u(x,y)}{\partial x} = \frac{k_B T}{2\sigma} \frac{\partial^2 u(x,y)}{\partial y^2} - u(x,y) \frac{\partial u(x,y)}{\partial y} $$

$$ - \frac{1}{\sigma} \frac{\partial V(x,y)}{\partial y}, $$

(4)

which is Burgers’s equation1 with a diffusion constant or damping proportional to T and conservative random forcing, $\partial V/\partial y$. When (4) is viewed as a nonlinear diffusion equation, x serves as the time coordinate and y as the space coordinate, and $u(x,y)$ is the drift velocity. That $u(x,y)$ is indeed a velocity, which scales as distance over time (y/x), is necessary because of the Galilean invariance of (4). The free energy $F(x,y)$ has a term that is linear in x. Since $u = \partial F/\partial y$, however, the fluctuations in F about this average value scale as y^2/x. The fluctuations in F scale as x^2 and y scales as x^4, and so this implies $\chi = 2\zeta - 1$. This exponent relation was pointed out by Huse and Henley3 and can also be seen by examining the gradient-squared term in the Hamiltonian (1).

The forced Burgers’s equation (4) obeys a fluctuation-dissipation theorem2 as a consequence of which its steady-state distribution is simply

$$ P[u(x,y)] \propto \exp\left[-\frac{1}{2} \lambda \int dy \ u^2(x,y) \right], $$

(5)

with $\lambda = \sigma k_B T/\Delta$. This invariant distribution implies that

$$ \langle [F(x,y) - F(x,y')]^2 \rangle = \sigma |y - y'|/\lambda, $$

(6)

and, hence, $2\chi = \zeta$. The two exponent relations together dictate $\zeta = \frac{4}{7}$ and $\chi = \frac{1}{7}$, which are equivalent to the exponents derived by Forster, Nelson, and Stephen2 for (4). The analysis of Forster, Nelson, and Stephen2 implies that, for a given λ, the same fixed point governs the behavior of (4) at large distance and time scales for all Δ, including in the limit $T \to 0, \Delta \to 0$ at fixed λ. This limiting case of the Burgers’s equation with neither forcing nor damping is exactly integrable.1 The scaling exponents discussed above were first obtained by Burgers,4 who studied the evolution in this integrable limit of random initial conditions with a distribution similar to (5).

Kardar and Nelson3 recently solved a model of parallel interfaces with disorder and hard-core repulsion, from which they indirectly obtained the exact exponents ζ and χ. A similar scaling behavior has also been found by van Beijeren, Kutner, and Spohn,7 for a hard-core lattice-gas model of one-dimensional conduction.

David A. Huse
Christopher L. Henley$^{(a)}$
Daniel S. Fisher
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Received 30 September 1985
PACS numbers: 75.60.Ch, 05.50.+q, 75.10.Hk, 82.65.Dp

$^{(a)}$Present address: LASSP, Cornell University, Ithaca, N. Y. 14853

1J. M. Burgers, The Nonlinear Diffusion Equation (Reidel, Boston, 1974).

4M. Kardar, preceding Comment [Phys. Rev. Lett. 55, 2924(C) (1985)].

5U. Deker and F. Haake, Phys. Rev. A 11, 2043 (1975). Note that if one makes the natural extension of (1), describing a string in a random potential, to higher dimension, the fluctuation-dissipation theorem no longer holds for the corresponding generalization of the forced Burgers’s equation (4) and there is not a known invariant distribution. See also Ref. 2.
