The “Coulomb phase” in frustrated systems

Christopher L. Henley
Dept. of Physics, Cornell University

Abstract. The “Coulomb phase” is an emergent state for lattice models (particularly highly frustrated antiferromagnets) which have local constraints that can be mapped to a divergence-free “flux”. The coarse-grained version of this flux or polarization behave analogously to electric or magnetic fields; in particular, defects at which the local constraint is violated behave as effective charges with Coulomb interactions. I survey the derivation of the characteristic power-law correlation functions and the pinch-points in reciprocal space plots of diffuse scattering, as well as applications to magnetic relaxation, quantum-mechanical generalizations, phase transitions to long-range-ordered states, and the effects of disorder.
1. Introduction

1.1. The basic idea

A class of interesting lattice systems in solid state physics and statistical mechanics have ground states which (to a first approximation) are highly constrained yet highly degenerate – that is, more or less, the current definition [5] of a “highly frustrated” magnet. A fundamental problem in handling such systems theoretically is that of “navigation” among these states. Is there a way to label and enumerate the states so as to carry out a sum over them, and evaluate a partition function? Or if a particular state is somehow to be “selected” out of the ensemble, how do we find that “needle in a haystack”? One of the standard answers is a coarse-graining, that discards most of the information in the configurations and keeps local averages of certain quantities, thereby converting the lattice problem into a continuum model. For this to be fruitful (and physically meaningful) the quantity being averaged ought to be conserved (It might also be the order parameter of some long range order, but our models are liquid-like in the first approximation – that is just paraphrasing the characterization in the first sentence.) In ordinary (off lattice) liquids, this is rather mundane: local particle densities and momentum densities. But in the lattice models I have in mind, we are back in the wilderness: the microscopic degrees of freedom (e.g. spins) usually don’t have a conservation law, and (it being a lattice model) there is no momentum conservation.

Fortunately, in quite a few cases, another kind of conservation is hidden in the first-order ensemble: a constraint on the total spin (or other degree of freedom) surrounding each lattice point. That allows us to map each microstate of local variables into a configuration of (weighted) arrows living on the bonds of the lattice, such that the signed sum of the arrow weights into every vertex (outwards minus inwards) is exactly zero in any allowed configuration. Such arrows are called “lattice fluxes” since this is exactly the zero-divergence condition an electric or magnetic flux would satisfy (in the absence of sources), if the field were constrained to lie along those lattice edges and its flux could only take discrete values.

The desired emergent vector field \(\mathbf{P}(\mathbf{r}) \) is the coarse graining of this flux: [1, 2, 3, 4] that is, the mean value of the lattice fluxes over a volume centered at \(\mathbf{r} \) much bigger than a lattice constant, but much smaller than the system size; the divergence condition becomes \(\nabla \cdot \mathbf{P}(\mathbf{r}) = 0 \). Furthermore it turns out [Sec. 3] that the effective coarse-grained free energy has the form \(\int d^d \mathbf{r} \frac{1}{2} |\mathbf{P}|^2 \), exactly the form of the field energy of an electric (or magnetic) field.

There are many ways to apply this analogy to find the long-distance behaviors of our constrained model. Since the probabilities according to this free energy are Gaussian, one can compute practically any desired expectation. In particular, the “spin” correlations depend on separation \(R \) with the functional form of a dipole-dipole interaction, proportional to \(1/R^d \) in \(d \) dimensions. It was somewhat surprising to find such a slow decay (with a divergent correlation length) in such a liquid-like, maximally random system. Such states (in three dimensions) have acquired the name “Coulomb phase”.

The conditions for a Coulomb phase are that

\[\]

\[\]

‡ For example, the classical state which optimizes the energy gain from some perturbation term in a classical Hamiltonian, or from quantum fluctuations in a quantum Hamiltonian.
The “Coulomb phase” in frustrated systems

(C1) each variable can be mapped to a signed flux P_i running along bond i;
(C2) the variables obey hard constraints, such that the sum of the (incoming) fluxes at each (parent) vertex is zero;
(C3) the system is in a highly disordered phase, without any long range ordered pattern.
This may be called “liquid-like” to express the disorder coupled with strong local correlations [implicit in (C2)].

1.2. Rearrangements

What local rearrangements are permitted by the flux constraint? If I flip the variable on a bond adjacent to parent lattice site α, so as to change its flux from incoming to outgoing, I must flip the flux in the opposite way on one of the other bonds. Thus, the natural rearrangements (either in a simulation, or a real system) are entire loops, which are sometimes called “Dirac strings”. As one traverses the string in a particular direction, the sense of the flux arrows is always the same with respect to the walking direction; the local rearrangement reverses this sense, from always forwards to always backwards or vice versa. Thus, if the string extends across the whole system, the rearrangement changes P, but if the string closes, then P is unchanged. [An example of such an update is shown later in Fig. 4(a).]

1.3. Outline of the article

The aim of this review is to survey the lattices and models (and real materials) in which a Coulomb phase are found (Sec. 2); to walk through the derivation of its power-law correlations (Sec. 3); and to highlight some interesting ways that Coulomb-phase ideas have been deployed to solve problems in frustrated systems. These include, topological defects that (in the case of dipolar spin ice) are (emergent) magnetic monopoles (Sec. 4); dynamics (Sec. 5); quantum-mechanical generalizations (Sec. 6); transitions to ordered phases (Sec. 7); and quenched disorder (Sec. 8).

Although this review touches on many aspects of frustrated spin models (gauge theories, disorder, quantum dimer models, dynamics), it does not aim or claim to review any of these major topics, except for particular instances that happen to be tractable using the Coulomb-phase notions. Indeed, even concerning the Coulomb-phase developments to date, I have not tried to exhaustively survey all papers – I only try to represent each aspect of the topic in the sections. My choice of particular results to highlight is driven by the motives of presentation, and does not always imply priority or importance.

2. Examples

How can we realize a Coulomb phase? This breaks up into two questions: which models, on which lattices, have the requisite constraints? (Sec. 2.1). And, which physical systems realize such models (the rest of this section). Of course, though two physical systems may realize mathematically equivalent models, quite likely different kinds of quantities are experimentally accessible in the respective systems.

I will also point out that one might view the constrained system as either a $T = 0$ or $T = \infty$ limit of some statistical mechanics model. If we consider an enlarged configuration space in which the constraint is not forced, but its violation costs energy (as I do in Sec. 4), the constrained model is the $T = 0$ limit. On the other hand, within
the constrained ensemble we might consider adding a Hamiltonian which breaks the degeneracy among states – examples are kagomé ice (Sec. 2.5.1) and the perturbations driving transitions in Sec. 7 – in which case the basic ensemble is the $T = \infty$ limit.

2.1. Lattices

What models give rise to Coulomb phases? First I will talk about the lattices, and then the degrees of freedom.

2.1.1. Parent and medial lattices

First of all, we always have a “parent” lattice B which is bipartite, i.e. one that can be partitioned into (equivalent) sublattices of even and odd nodes such that every bond connects an even node to an odd node. Degrees of freedom – call them “variables” for short – live on these bonds, i.e. on sites of “medial” lattice L consisting of the bond midpoints. (I will call sites of the parent lattice “nodes” simply to help keep them straight from “sites” of the medial lattice.) Conversely, I call B the “premedial” lattice of L. (In the literature, B is often sloppily called the “dual” lattice, which properly means something different. For example, the premedial lattice of the kagomé lattice is the honeycomb, but the dual of the kagomé is the dice lattice.)

See Table 1. The most important three-dimensional example is the pyrochlore lattice (diamond as parent lattice). The simplest realization is the “B” sublattice (octahedral sites) of the spinel (usually oxide) structure. The other important realization is the pyrochlore crystal structure. (That is a large family of oxides, which contain two interpenetrating pyrochlore lattices, each occupied by a different species of cation.)

An example which deserves more attention is the “half-garnet” lattice. The magnetic lattice in a garnet consists of two interpenetrating copies of this lattice. The parent lattice is the “Laves graph of degree three”, in which each vertex has three bonds forming 120° angles, and its Bravais lattice is bcc; thus, its symmetry is just as high as the pyrochlore’s.

I also included the “octahedral” lattice, which gets reinvented from time to time as a toy model because its parent lattice is simple cubic, suitable for simple-minded theorists. Finally, the “sandwich” lattice consists of two kagomé layers linked by an additional triangular layer, and models the antiferromagnet SrCr$_{8-x}$Ga$_{4+x}$O$_{19}$, so it is essentially two dimensional. There are experimental realizations for most of these lattices.

For pedagogical purposes, I will use two-dimensional lattices in all figures, even though (see Sec. 3.3) these are not quite bona fide Coulomb phases. The reader should view them somewhat more as analogies (to $d = 3$) rather than as examples.

2.1.2. Degrees of freedom

The most common models reduce to either ice-models or dimer models. An ice model is defined on a parent lattice with even coordination number Z_B (also called “six-vertex” model in the usual case $Z_B = 4$.) Every edge carries an arrow, and at every vertex the “ice rule” constraint is obeyed, namely half the vertices point in and half point out [14, 15]. This arrow obviously is the flux. [See Fig. 1(a).]

\S The “hyperkagomé” lattice [87, 88] is equivalent to the half-garnet lattice, so long as only first neighbor bonds are taken into account, but has less symmetry: one primitive cell of hyperkagomé is two primitive cells of half-garnet.
Table 1. Parent lattices and medial lattices. The table shows the spatial dimension d, the parent lattice with its coordination Z_B, and Bravais lattice, the medial lattice with its coordination Z_L, and the number of sites per cell. The length ℓ_{loop} of the shortest loop (same in either lattice) is also given. Finally, a reference for the lattice is given. The clusters formed around each node of the parent lattice have Z_B sites (forming triangles, tetrahedra, or octahedra).

<table>
<thead>
<tr>
<th>d</th>
<th>parent lattice \mathcal{B}</th>
<th>Z_B</th>
<th>Brav. latt.</th>
<th>medial lattice \mathcal{L}</th>
<th>Z_L</th>
<th>sites</th>
<th>ℓ_{loop}</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>square</td>
<td>4</td>
<td>sq. checkerboard</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>[6, 7]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>honeycomb</td>
<td>3</td>
<td>tri. kagomé</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-8 lattice</td>
<td>3 sq.</td>
<td>“squagome”</td>
<td>4</td>
<td>4+2</td>
<td>4</td>
<td>[8]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diamond</td>
<td>3,4</td>
<td>tri. “kagomé”</td>
<td>5,6</td>
<td>7</td>
<td>6</td>
<td>[9]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bilayer</td>
<td></td>
<td>sandwich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>simple cubic</td>
<td>6</td>
<td>s.c. octahedral</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>[10, 11, 12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diamond</td>
<td>4</td>
<td>f.c.c. pyrochlore</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laves graph</td>
<td>3</td>
<td>b.c.c. half-garnet</td>
<td>4</td>
<td>4?</td>
<td>10</td>
<td>[13]</td>
<td></td>
</tr>
</tbody>
</table>

A dimer means an object which covers two nodes of the parent lattice. Unless otherwise specified, a dimer covering also satisfies the condition that every node is covered by exactly one dimer: dimers never overlap, and no node is left uncovered. To define the flux, we draw an arrow of weight $Z_B - 1$ along each dimer-occupied edge, pointing from the even to the odd node; and arrows of weight 1 along each unoccupied edges, pointing in the opposite direction. (Obviously a different overall normalization of the flux could be used.) Illustrations of this weighting may be found in Fig. A1(a,b,d).

Figure 1. Mappings of the ice model on the diamond lattice (green edges). (a). Polarization arrows of the abstract ice model. (b). Water ice (c). Compound of species A and B (d). Ising ground state. Each configuration shown in (b,c,d) maps to the arrow pattern in (a).

2.2. Water ices

I now turn to the different kinds of physical realization, starting with real ice. In crystalline H_2O, the O atoms form a diamond lattice with hydrogen bonds to all four neighbors. Two of the these adjacent H’s are covalently bonded to the O in question (as H_2O), while the other two H’s belong to the neighboring O’s. [Fig. 1(b)]. The variables representing a configuration of the H’s are arrows along the lattice bonds, and

The usual form of water ice uses the hexagonal diamond lattice. The cubic diamond lattice used in the model has very similar behaviors, but is nicer theoretically owing to its higher symmetry.
clearly satisfy the “ice rule”. This is the first highly frustrated model to be analyzed, by Bernal [14] and Pauling [15] in the 1930s. There are many structures (often ferroelectrics) having hydrogen bonds such that the low energy structures realize some kind of ice rules.

2.3. Lattice-gas orders

An important way to realize constraints is when some kind of mutually repelling particle occupies the medial lattice sites. If we constrain the overall filling \(n \) by these particles to certain rational fractions, and if the interactions are only nearest neighbor, it is easy to see the ground states are those in which every triangle or tetrahedron has the same filling. If have two species \(A \) and \(B \) which attract each other more than their own kind, with filling \(n \) of species \(A \) and \(1 - n \) of species \(B \), as suggested for CsNiCrF\(_6\) [16, 17] we get exactly the same ensemble.

When \(n = 1/2 \), we can map the configurations to an ice model [Fig. 1(c)]: each occupied site becomes an even-to-odd arrow on the corresponding bond of the parent lattice; each vacant site becomes a bond in the opposite direction [18]. Another special filling is \(n = 1/Z_b \), in which case we map the occupied sites to dimers.

One realization is in oxides where the cations have a mix of two valence states, corresponding to species \(A \) and \(B \); an example of this is magnetite Fe\(_3\)O\(_4\), which has an equal mixture of Fe\(^{+2}\) and Fe\(^{+3}\) on the spinel-B-sites [18].

2.3.1. Heavy-electron spinel Li\(_2\)V\(_2\)O\(_4\)

Another example is the metallic spinel Li\(_2\)V\(_2\)O\(_4\) [19], which exhibits heavy-fermion behaviors despite the absence of \(f \) electrons. With ion charges Li\(^{+1}\) and O\(^{-2}\), charge balance demands (on the vanadium occupied B sites) \(n = 1/2 \) of V\(^{+3}\) and the rest of V\(^{+4}\). Fulde and collaborators [19, 20] proposed quantum-mechanical models in which the correlated electrons can hop with amplitude \(t \) on the frustrated lattice. They work from the limit of strong Coulomb repulsion, modeled discretely in the spirit of the Hubbard model; an on-site term effectively constrains the occupancy to at most one electron per site, plus the intersite repulsion \(V \) which is responsible for the flux constraint.

2.4. Antiferromagnets

The remaining kinds of realization are magnetic.

2.4.1. Relation of antiferromagnetic Hamiltonian to constraint

Define \(\mathbf{L}_\alpha \) to be the total spin on the cluster surrounding site \(\alpha \) of the parent lattice:

\[
\mathbf{L}_\alpha \equiv \sum_{i \in \alpha} \mathbf{s}_i
\]

(denoted by “\(i \in \alpha \)”). We want the Hamiltonian to constrain

\[
\mathbf{L}_\alpha = 0
\]

for all \(\alpha \). Next, say the Hamiltonian can be written as

\[
\mathcal{H}_{\text{spin}} = \frac{1}{2} J_{\text{spin}} \sum_{\alpha} \mathbf{L}_\alpha^2.
\]

Since the orbitals are actually \(d \) orbitals, I have glossed over several complications of orbital degeneracy and orbital dependent hopping amplitude, as well as spin.
Manifestly, this gives what we wanted: the classical ground states are any configuration satisfying (2.2); the net spin in every cluster is zero. Furthermore, all such configurations are degenerate.

But in fact, if one simply expands the square in (2.3), one gets an antiferromagnet with coupling \(J_{ij} = J_{\text{spin}} \) if \(i \) and \(j \) belong to the same cluster, and zero otherwise. In the example lattices (all except the octahedral) where the every cluster is a triangle or tetrahedron, that just means the nearest neighbors: the ground states of the nearest-neighbor antiferromagnet are highly degenerate, but every state satisfies the constraint (2.2) around every \(\alpha \).

The ground state ensemble of a system obeying constraints and lacking any kind of long range order may in general be called a “cooperative paramagnet” (sometimes called “classical spin liquid” which means the same thing.) It bears the same relation to the usual high temperature paramagnet.

Next I explain the three different situations in which antiferromagnets can form Coulomb phases [3].

2.4.2. Ising antiferromagnet The ground states of the pyrochlore lattice Ising antiferromagnet have two up and two down spins in every tetrahedron. The Ising model is not realistic in its own right for three-dimensional lattices (mainly because their symmetry is incompatible with the special axis of the Ising spins), but many other models map to it. For example, the pyrochlore Ising antiferromagnet’s ground states map 1-to-1 onto those of diamond-lattice ice model [18, 21]. Each spin \(t_i \) maps to an arrow pointing along the corresponding diamond lattice edge, in the positive (negative) sense from the even to the odd vertex. [See Fig. 1(d).]

Notice that, if we turn on an external field tuned to the appropriate size, the ground states (on any of our lattices) have \(Z_\beta - 1 \) spins up and one down on every cluster, so this maps to a dimer covering.

2.4.3. Isotropic Heisenberg model: “classical spin liquid” This state arises when the spins are classical vectors (or can be treated as such), if all states in the continuous manifold satisfying (2.2) are more or less equally likely. In this phase, every vector component of the spins satisfies the flux constraint; thus, the polarization field has indices not only for directions in space, but also for the three spin components.

2.4.4. Isotropic Heisenberg model: “Emergent discrete spins” This state can arise in the classical models (mainly the triangle-based lattices) that manifest “order by disorder” in the sense of Moessner and Chalker [6, 7]; it also arises in all quantum models with sufficiently large spin length \(S \), when \(T \) is low enough that spin-wave energies favoring collinear or coplanar states are important [22, 23, 24]. We get a discrete subset of spin states in which all spins are collinear along a given axis (or coplanar when the clusters are triangles). The ensemble of this discrete subset is some sort of Ising model or coloring model, still satisfying the constraint (2.2).

2.5. Spin ice

In “spin ice” pyrochlore magnets \(\text{Dy}_2\text{Ti}_2\text{O}_7 \) and \(\text{Ho}_2\text{Ti}_2\text{O}_7 \) local (111) spin anisotropies (additional to (2.3)) reduce the ground state manifold to effective Ising states [25, 26], as reviewed in [27]. The easy axis is the bond direction \(\hat{u} \); \(s_i = t_i \hat{u} \) with \(t_i = \pm 1 \). The actual interactions are ferromagnetic, \(J_F < 0 \). Since \(\hat{u}_m \cdot \hat{u}_{m'} = -1/3 \) for
neighboring spins, the Hamiltonian in terms of \(\{ t_i \} \) reduces to an Ising model with antiferromagnetic \(J = -J_F / 3 \). In terms of the original model, the ground states of this ensemble literally implement the ice rules, i.e. each tetrahedron (surrounding a parent lattice node), two spins point in and two point out.

2.5.1. Kagome ice When a (not too strong) magnetic field is placed on spin ice along (say) the [111] direction, it selects out a subset (still with extensive entropy) of ground states. Namely, every spin on a bond of the parent lattice in the 111 direction is parallel to the field. The three remaining sublattices are still free to fluctuate; but they form disconnected kagome layers, so we now have a stack of independent two dimensional systems, hence this system (realized experimentally) is called “kagome ice” [28]. The parent lattice of each layer is a honeycomb lattice; the spin constraint in the layer is two in/one out on (say) the even nodes, and oppositely on the odd nodes. These configurations map exactly to those of a dimer model on the honeycomb lattice. (The dimer positions correspond to the single spin with its in/out sense opposite to the others in its triangle.)

2.5.2. Dipolar spin ice The actual spin ice materials Ho\(_2\)Ti\(_2\)O\(_7\) and Dy\(_2\)Ti\(_2\)O\(_7\) are well approximated as having nothing but (long-ranged) dipolar spin interactions, rather than nearest-neighbor ones. Although this model is clearly related to the “Coulomb phase”, I feel it is largely an independent paradigm with its own concepts that are different from the (entropic) Coulomb phase that most of this review is about.

The key fact is that all microstates satisfying the ice rules have very nearly the same energy [29]; this was first appreciated numerically [30] (after the technical problems of simulating long-range interactions in periodic boxes were sorted out). The simple explanation was given in [31]. It’s a good approximation – for the far field, anyhow – to replace each point dipole by a pair (so-called “dumbbell”) of opposite effective charges \(\pm q \) having the same dipole moment \(\mu \), and we might as well separate them by the bond length \(d \) of the parent lattice, thus \(\mu = qd \). So, all the effective charges sit on parent lattice nodes, and each node gets contributions from four dipoles (see Fig. 2). Indeed, so long as the spin configuration satisfies the ice rules, those four contributions add to zero on every node, and (within this approximation) the interaction energy is zero (I omitted a configuration-independent constant representing the interactions between the two charges forming each dipole). In principle, small multipole interactions, representing the difference between the actual interactions of point dipoles and those of the effective charges, will break the degeneracy and lead to ordering at much lower temperatures.

3. Coarse-graining, Fourier mode fluctuations, and long-range correlations

In this section, I present the steps leading to power-law correlations using the framework of a continuum theory, in the ideas appear more transparently.

3.1. Polarization field and effective free energy

The polarization field is the key object of the Coulomb phase. As already laid out, our system has an extensive entropy of ground states (degenerate at this order). How to handle this? Recall the discrete fluxes \(P_i \), which we defined along every bond of the parent lattice. Define a (whole-system) polarization density \(P \equiv \sum_i P_i / \text{volume} \). This
The “Coulomb phase” in frustrated systems

(a). (b).

Figure 2. Dipolar spin ice and monopoles. (a). A configuration obeying ice rules, except for defects of charge $Q = +2$ and -2 (marked). (b). When each dipole is replaced by a pair of charges (red + and – symbols) at the ends of its bond, these cancel out at every node of the parent lattice where the ice rule is obeyed (open blue circles), but add to a total proportional to Q at defect nodes (shaded purple circles).

is a good choice for writing thermodynamic functions, since the ground-state entropy density evidently depends on it.

Recall the point of Sec. 1.2, that rearrangements (within the flux constraints) must occur along strings which follow flux arrows. Now, if P is large, most fluxes have a positive component in that direction and the typical string crosses the system – a closed string would require half of its fluxes to have a backwards component, but such a local gathering of reversed fluxes is unlikely. On the other hand, when P is near zero, there are many closed strings in any configuration, and hence many rearrangements which preserve P. It’s clear, then, that the number of configurations $\mathcal{N}(P)$ with a given polarization is maximum at $P = 0$ and goes to zero as P approaches its saturated value. So let’s define an entropy density

$$s(P) \equiv \lim_{V \to \infty} \frac{\ln \mathcal{N}(P)}{V}$$

which is maximum at zero.

Next, so long as the ensemble is a “liquid” lacking long-range orders, the local polarization (if we divide the system into smaller boxes) is fluctuating, and not too strongly correlated from box to box. Then the Central Limit Theorem says the ensemble probability (= number of ground states for a given P) in a system of large volume V approaches a Gaussian form

$$\mathcal{N}(P) \propto \exp(-|P|^2/2\sigma_P^2)$$

with a variance $\sigma_P^2 = 1/\sqrt{K} V$ for some K. Comparing with (3.1), we see

$$s(P) \approx s_0 - \frac{1}{2} K |P|^2$$

for small P. (All this was a completely standard argument from basic statistical mechanics; it is the same reason the free energy is proportional to (magnetization)2 in a paramagnet, or that one assumes analyticity in the Landau free energy functional.)

Next let’s consider the spatial fluctuations of P, which are more interesting (and more measurable!) – than the functional form of $s(P)$. This requires defining a spatially varying polarization field $\mathbf{P}(\mathbf{r})$; it is a coarse-graining, i.e. the average of
discrete polarizations over some neighborhood of \(r \) (one much larger than the lattice constant but much smaller than the system size.) We assume \(P(\mathbf{r}) \) varies smoothly. Corresponding to the discrete flux constraint, \(P(\mathbf{r}) \) satisfies a divergence constraint
\[
\nabla \cdot P(\mathbf{r}) = 0
\]
like a magnetic field without monopoles.

The total free energy (arising entirely from entropy) is the sum of those in the boxes or averaging volumes into which we can divide the system, hence
\[
F_{\text{tot}} \left(\{ P(\mathbf{r}) \} \right) / T = \text{const} + \int d^d r \frac{1}{2} K |P(\mathbf{r})|^2,
\]
Eq. (3.5) and (3.4) look, respectively, like the field energy of a magnetic (or electric) field, and its divergence constraint, in the absence of monopoles (or charges). That electrostatic (or magnetostatic) analogy is fruitful, and is why this state was dubbed “Coulomb phase.”

In the case of dipolar spin ice, since the fluxes are parallel to real moments, the polarization is proportional to the real magnetization \(\mathbf{M} \).
\[
\mathbf{M} = \mu \mathbf{P},
\]
Furthermore, if a region has a net polarization, we have a field energy of form (3.5), but now \(K \equiv \mu_0 \mu^2 \), where \(\mu_0 \) is the permeability of free space, in the limit \(T = 0 \): it is purely energetic rather than entropic. At \(T > 0 \), the entropic elasticity gives an correction to the permeability. (In water ice, which has long range electric dipole interactions, the analogous contribution to the dielectric constant has long been known [32].)

3.2. Pseudodipolar correlations and structure factor

The standard way to evaluate correlations is to transform to Fourier space. Eq. (3.4) gives
\[
\mathbf{q} \cdot \mathbf{P}(\mathbf{q}) = 0
\]
so a naive use of equipartition would give \(\langle P_\mu(-\mathbf{q}) P_\nu(\mathbf{q}) \rangle = (1/K) \delta_{\mu\nu} \). so (3.5) gives
\[
F_{\text{tot}} = \sum_\mathbf{q} \frac{1}{2} K |P_\perp(\mathbf{q})|^2.
\]
where \(P_\perp(\mathbf{q}) \) refers to the components of \(\mathbf{P}(\mathbf{q}) \) satisfying (3.7). The fluctuations are gotten by first writing the (trivial) result of equipartition for an unrestricted \(\mathbf{P}(\mathbf{q}) \), and then projecting to obtain the transverse part:
\[
S_{\mu\nu}(\mathbf{q}) = \langle P_\mu(-\mathbf{q}) P_\nu(\mathbf{q}) \rangle = \delta_{\mathbf{q},\mathbf{q}'} \frac{1}{K} \left(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{|\mathbf{q}|^2} \right),
\]
3.2.1. Diffraction consequences A physical observable \(\Phi(\mathbf{r}) \) usually has a contribution proportional to \(\mathbf{P} \), but possibly the correspondence is modulated e.g. by alternating signs, so we write
\[
\Phi_\alpha(\mathbf{r}) = (...) + \sum_\mu c_{\alpha\mu}(\mathbf{r}) P_\mu(\mathbf{r}).
\]
where \(\{ c_{ab}(r) \} \) is a matrix of coefficients, with the symmetry of the lattice, and indices \(ab \) refer to possible \(i \) components of the observable. It follows that the observable structure factor, measured in diffraction, behaves as:

\[
S_{ab}^{\phi}(q) \equiv \langle \Phi_a(q) \Phi_b(-q) \rangle = (\ldots) + \sum_{\mu Q} f_{\mu ab}(Q) S_{\mu \nu}(q - Q). \tag{3.11}
\]

where \(f_{\mu ab}(Q) \) is some sort of structure factor derived from the \(c_{ab} \)'s, and \(Q \) are reciprocal lattice vectors.

Two important features may be noted. First, the polarization constraint says that a certain linear combination of fluxes is exactly zero (their projection on the inward direction at a node of the parent lattice). That translates into a strict zero of the appropriate structure factor, at a certain wavevector. In the case of an antiferromagnet, or spin ice, the constraint is that magnetization is exactly zero in each cluster. Hence, we find a very low scattering near the zone center (the diffuse intensity grows as a high power of \(|q|\)); also, the intensity has zeroes along every direction that is a symmetry axis of all clusters.

The second and more striking feature comes from the second term in (3.9). Although not divergent, it is singular: the ratio has a different limit at \(q = 0 \), depending on the direction of approach. In reciprocal space, this has the characteristic shape of a “pinch point”, at which the contours of equal intensity have a roughly triangular shape. The form factor in (3.11) translates these to reciprocal lattice vectors \(Q \) other than zero, as seen in data from [33], shown in Fig. 3. (Earlier experiments [34] gave less clear-cut images: polarized neutron diffraction is needed to separate the contributions from different spin components.)

I discussed in [3] the way that other kinds of hard constraint also produce sharp features in reciprocal space. For example, if you constrain a lattice gas on an fcc lattice so that every particle has an equal number of occupied neighbors, you get rings [35]. (Similar features are observed in quasicrystals and ascribed to local tiling constraints [36]). This constraint superficially resembles that of a coulomb phase as laid out in Sec. 2.3; the outcome is different because the fcc lattice isn’t the medial lattice of a bipartite lattice.)

3.2.2. Real space correlations

Fourier transforming (3.9) back to direct space gives

\[
\langle P_\mu(0) P_\nu(r) \rangle \approx \frac{c_3}{K r^d} \left(\delta_{\mu \nu} - d \hat{\mu} \hat{\nu} \right) \tag{3.12}
\]

at large separations \(r \) in \(d \) dimensions, where \(\hat{\mu} \equiv \mathbf{r}/|\mathbf{r}| \) and \(c_3 = 4\pi \). So the correlations, which one naively expected to be exponentially decaying in this “liquid-like” state, are instead power-law-decaying i.e. critical-like. They have the spatial dependence of a dipole-dipole interaction.

This criticality was appreciated in the ice model as early as 1973, being detected originally in a simulation [37]. The universal explanation (above) how dipolar correlations arise from (3.5) with the divergence condition, was first put forward in 1981 to explain experiments on two-dimensional ice-like systems [1]. It was noticed in the context of antiferromagnets in [38] and (most influentially) announced as a general idea (initially for dimer coverings) by Huse et al [2].

We can apply these ideas to the nonlocal spin susceptibility near a defect. Consider a vector-spin antiferromagnet on one of the lattices in Table 1, where the
spins are diluted (this corresponds to bond dilution on the parent lattice). At a
dangling node, one that has just one neighbor, the flux constraint cannot possibly be
satisfied. Such “orphan spins” respond to external fields like free moments, and in line
with Eqs. (3.12) [or (4.1), below] their perturbation of the surrounding spins decays
as a power law (with oscillations depending on how spins map to polarizations). This
can be modeled within a Coulomb-phase framework, [39] and used to explain NMR
observations in SrCr$_9$Ga$_{12-9p}$O$_{19}$.

3.2.3. Calculation for specific lattices
So far we only obtained the asymptotic
functional form near “pinch points”: more practically, one would like to model
(approximately) the diffuse scattering over the entire Brillouin zone for a specific
model. For the spin models of Sec. 2.4, a systematic way is to allow $n \rightarrow \infty$ where
n is the number of spin components. This “large-n” approach is a standard trick
of statistical mechanics, since (in that limit) the constraint of unit length becomes
irrelevant and we have a linear problem [4, 40, 41]. This turns out to be an good
approximation even for $n = 1$.

An ad-hoc “maximum-likelihood” approach, [3], which can be applied to any
model of our class, is to consider the fluxes P_i (representing the model variables) to be
real numbers, subject to two kinds of constraint: (i) that P_i take certain discrete values
(ii) the usual divergence constraint. We then replace (i) by a weighting $\exp(-\frac{1}{2}P_i^2/\sigma^2)$,
where σ^2 is chosen to give the correct variance when the $\{P_i\}$ are chosen at random
(and unconstrained by the divergence condition). The cluster-variational approach [42]
is related.

Finally, Villain predicted correlations in ice using a clever random-walk
approximation to a series expansion [43], which has not yet been reconsidered in
the literature. I would suspect this amounts to a Bethe-lattice approximation (i.e.
eglecting the existence of loops in the lattice).

![Figure 3. Pinch point in diffraction. From [33]. Spin-flip component of polarized
neutron diffuse scattering from the spin-ice pyrochlore compound Ho$_2$Ti$_2$O$_7$, in
the (hhh) plane of reciprocal space. Left side, experimental result; right side,
Monte Carlo simulation. The added arrows highlight the “pinch point” features
at the wavevectors labeled.](image-url)
3.3. Height models: two-dimensional Coulomb phases

It is even easier to realize a flux constraint in $d = 2$ than in $d = 3$, and such models exhibit all the phenomena mentioned here. However, they exhibit additional, even more striking, behaviors which are peculiar to two dimensions, and for that reason they fall outside the scope of this article. Here I will just summarize the differences; such “height models” call for a review paper of their own [44, 45, 46, 47, 48, 49].

To see what’s different, recall that a divergence-free field such as our $\mathbf{P}(\mathbf{r})$ can always be written as a curl of a vector potential, $\mathbf{P}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$. In three dimensions, \mathbf{A} is ill defined due to its gauge freedom; but in two dimensions, $\mathbf{A}(\mathbf{r})$ has only one component (normal to the plane) and is an ordinary potential, uniquely defined modulo an additive constant. [To see this, note that $\mathbf{P}_{\text{rot}} = (-P_y, P_x)$ carries the same information as \mathbf{P} but satisfies $\nabla \times \mathbf{P}_{\text{rot}} = 0$, hence $\mathbf{P}_{\text{rot}} = \nabla A$ defines a potential.]

We can think of this as mapping a configuration of the variables to one of a crystal interface [44, 45] with profile $z = h(x,y) \equiv A(x,y)$. The “Coulomb phase” corresponds to the “rough” phase of such an interface model with the well-known form $F_{\text{tot}} = \int d^2 r \frac{1}{2} K |\nabla h(\mathbf{r})|^2$. However, because $h(\mathbf{r})$ is uniquely defined, a generic physical variable (written in terms of field variables) is not only a linear combination of ∇h terms, but also has periodic terms of form $\cos(2\pi m h/a)$. [The repeat offset a depends on the model and the definition of $h(\mathbf{r})$.] It can be shown that:

(i) This leads, in the rough phase, to critical correlations with a parameter (and temperature) dependent exponent $\sim T/K$.

(ii) An un-roughening transition occurs when T/K decreases past a universal ratio, in which the system locks to a particular value of A, corresponding to long-range order of the model variables;

(iii) Thermal excited “defect charges” (see Sec. 4) do not necessarily destroy the critical phase; rather, they stay bound in pairs for T/K less than a universal critical ratio; the unbinding is the “Kosterlitz-Thouless” transition familiar in the XY model.

The critical correlations (i) imply singularities in reciprocal space, generally displaced at different positions in the Brillouin zone than the pinch points. Such singularities (in the height field) were called “zone-boundary singularities” in Refs. [47, 48, 49] or (in the structure factor) “pi-ons” in Ref. [50].

4. Pseudo-charge defects in Coulomb phases

If we change our rules to allow configurations that violate the flux constraint, merely including a Hamiltonian which strongly penalizes the violations so they are dilute at low temperatures – what do we get? Such a defect may be labeled by its “charge” Q, equal to the net (nonzero) flux in the outward sense (at a parent-lattice vertex). This is a “charge” in the sense of Gauss’s law, as the net flux through any surrounding surface must equal Q. That means the “charge” is conserved in time: the net charge in some volume can’t be changed except by moving it across the boundary, and defects can only be created in pairs of opposite charge. Their detectability from distant measurements, as well as the conservation properties, are characteristic of topological defects.
More interesting, in a Coulomb phase, the effective potential between defects must have the form of Coulomb’s law:

\[F_{\text{int}}(\mathbf{r}_1, \mathbf{r}_2) / T = \frac{K Q_1 Q_2}{4\pi |\mathbf{r}_1 - \mathbf{r}_2|} \]

(4.1)

(in \(d = 3\)). The interaction is defined by integrating the partition function, conditional that defect charges \(Q_1\) and \(Q_2\) are placed at \(\mathbf{r}_1\) and \(\mathbf{r}_2\), and by requiring the result to be proportional to \(\exp(-F_{\text{int}} / T)\). That is essentially how one obtains the Coulomb potential from the field energy in electro- or magnetostatics, and we must get the same result here since the field free energy has exactly the same form. In \(d = 3\) (but not necessarily in \(d = 2\)), our “charges” are deconfined i.e. a defect/anti-defect pair (in a large system) will separate and have independent positions. By contrast, if these same defects are present in a phase with long-range order of the variables, pulling apart the defects now carries a cost proportional to \(|\mathbf{r}_1 - \mathbf{r}_2|\): in that case, defects are “confined” the same way that quarks are.

Some authors have emphasized the notion of “Dirac string” meaning the trail of fluxes that got flipped as you pulled apart a defect/antidefect pair. It should be realized that this is a nebulous and not very helpful notion when applied in the Coulomb phase proper (with smallish polarization), since the string’s path is not well defined. That is, there are many different, equally good ways to represent a defect pair by (i) taking some configuration from the undefected ensemble and (ii) flipping the fluxes along a string. It is only in an ordered phase (see preceding paragraph), or near the limit of maximum polarization, that the Dirac string has a clear meaning.

When the model is a lattice gas of neighbor-repelling particles, that map to a dimer covering on the parent lattice, a simple way to create a defect/antidefect pair is to remove one particle or dimer (the total flux at the parent sites that the dimer spanned gets increased/decreased by the flux associated with a dimer). Evidently each of the two defects is carrying an effective particle number of 1/2, making this an elementary example of “fractionalization” [51].

In actual water ice, \(\text{OH}^-\) and \(\text{H}_3\text{O}^+\) ions (if the hydrogen bond network is unbroken) are topological defects of charge \(Q = \pm 2\) like the ones we were describing – except they aren’t very mobile, since proton transfer is slow at icy temperatures. A distinct kind of defect, the Bjerrum defect, is formed when there are no protons, or two, along a given bond (maps to a nonmagnetic or doubly magnetic impurity in a spin system). The Bjerrum defects have charge \(Q = \pm 1\) and are mobile.

4.1. Thermal consequences

If the creation energy is \(E_Q\) for a defect of charge \(Q\), the defect density will behave as \(n_Q \propto \exp(-E_Q / T)\). The specific heat is affected proportionately. [As in semiconductors, the exponent is \(E_Q / T\) even though each defect pair costs \(2E_Q\), due to entropy , as the defect locations are independent.]

The defect “charges” are in the same situation as ions in a plasma (or in water), or as carriers in a compensated semiconductor: we get Debye screening of the fields. In consequence, the “Coulomb” effective interaction, (4.1), acquires a decaying factor \(\exp(-\kappa |\mathbf{r}_1 - \mathbf{r}_2|)\), where \(1 / \kappa\) is the Debye screening length, given by

\[\kappa = \sqrt{\frac{n_Q K Q^2}{T}}. \]

(4.2)
The pseudodipolar polarization correlations [Eq. (3.12) acquire the same exponential screening factor. In Fourier space, this corresponds to replacing $|q|^2 \to |q|^2 + \kappa^2$ in the denominator of Eq. (3.9).

How thermal excitation plays out in real systems depends on details of the model. In “spin ice”, the spin configurations are not inherently constrained to obey the constraint, so at $T > 0$ there is indeed a thermal concentration of defects. The cost

$$E_Q = JQ^2 \quad (4.3)$$

is $2J$ for the minimum charge $Q = \pm 2$. Following (4.2), then, we expect a $\kappa \propto \exp(-J/T)$, and this agrees with the experimental fit to the structure factor [33].

Around the reciprocal-space point where the defect-free diffuse scattering has a zero and flat basin, due to the exact cancellation in each tetrahedron, we expect an increase of diffuse scattering $\propto n_Q \propto \exp(-2J/T)$ as is also observed [33].

On the other hand, say one has a dimer model on a triangular lattice and that dimer constraint is absolute. It still is not a Coulomb phase [51] (since the parent lattice isn’t bipartite). However if a very strong external strain field biases the dimer orientations such that one orientation is excluded, the remaining (rhombic) lattice is bipartite and develops a Coulomb phase. (Exactly the same thing happens with dimers on the fcc lattice.

The experimental example of “kagomé ice”, where the external bias is the magnetic field, is similar: in that case, the bias causes a two-dimensional Coulomb phase to emerge from a three-dimensional one.)

Now, if the bias is reduced (but still strong) so that an occasional “wrong” orientation appears by thermal activation, that merely creates a dipole in the rhombic lattice’s polarization field. As we also know from electrostatics, an ensemble of dipoles changes the dielectric constant (or its analog $1/K$, in our case) but does not give Debye screening, so we continue to have power law correlations.

4.2. “Magnetic monopoles” in dipolar spin ice

In the case of dipolar spin ice (recall Sec. 2.5.2), what happens at a node where the ice rules are violated, so the net flux there is Q? The same construction outlined in Sec. 2.5.2, whereby point dipoles get replaced by pairs of effective charges $\pm q$, must put a net (magnetic) charge of Q on every such defect node, just as it puts zero charge on every other node. (See Fig. 2). The total energy of such a state is now given by the Coulomb interactions of these defect charges: they are emergent magnetic monopoles [31].

We should be clear in what sense this is a monopole. Microscopically, of course, the laws of nature continue to rule out monopoles. Thus, near to any defect site, in between the bond directions where there is an excess of (say) outward flux, there must be other directions where there is a “counterflow” of inward flux. This seems rather analogous to the current associated with the Bogoliubov quasiparticle in a BCS superconductor. Its motion across the sample indeed causes a charge transport, proportional to the difference between the fractions of electron and hole making up the quasiparticle. Yet, while traveling in the bulk, the quasiparticle actually can have no charge [52] (in consequence, there, of the Meissner effect).

Notice that although the “charge” interactions in dipolar spin ice look formally like those in entropic Coulomb phases, the physics is quite different. In the entropic
case, the energy cost is only the core costs of making the defects; the effective Coulomb interaction is wholly entropic, and emerges only as we allow the system in equilibrium to explore all those many microstates. By contrast, in the dipolar case, every one of the (many) microstates having defects of \(+Q\) and \(-Q\) at \(r_1\) and \(r_2\) has very nearly the same spin interaction energy, dependent only on \(|r_1 - r_2|\).

A way to note the difference is that for an ice model in \(d = 2\), defect charges or monopoles separated by \(R\) feel a \(\ln R\) potential in the entropic case (just consider Gauss’s law for the model flux, confined to the plane) whereas in the dipolar case they have the usual \(1/R\) interaction characteristic of three dimensions. Another situation that sharply illustrates the difference is “kagome ice” (see Sec. 2.5.1). So long as the ice rules are satisfied, that system breaks up into decoupled two-dimensional layers. But when charge defects are introduced in the dipolar system, their interaction is isotropic – it is the same whether the two defects are in the same or in different layers (even though each defect is still free only to move within a layer). By contrast, in the kagome ice phase of model spin ice with nearest-neighbor couplings, an interlayer defect interaction exists at all only to the extent that spins linking the layers have some fluctuations and mediate it.

One might reckon that the short-range models, in which (entropic) Coulomb behavior emerges from a collective state, is less trivial than the dipolar model, in which we have a bare magnetic energy. After all, our defect monopoles are not terribly different from the emergent monopoles found at the end of a long thin bar magnet, as we were taught in introductory magnetostatics. The important difference, and the reason for all the excitement is that – unlike the bar magnet poles –

(i) our monopoles move freely in response to forces;

(ii) their magnetic charges are quantized (the value depends on material properties),

the defect monopoles are mobile

(iii) A variety of cute experiments is possible which depend on the monopoles.

I would reserve the term “observation” of a monopole for an experiment isolating a single one. One might observe quantized jumps in the induced current around a conducting ring embedded in a sample whenever a monopole passes through it [31]. Alternatively, a monopole just inside the sample’s surface creates a characteristic \(1/R\) field outside it, which might be detectable by a scanning magnetic force microscope.

The experiments so far are instead thermodynamic and transport measurements, the interpretation of which depends on monopoles being the elementary excitations. Some of the experiments are:

- A phase separation between two paramagnetic phases – monopole liquid and monopole gas – as seen in kagome ice [53]
- Magnetization dynamics (see below), whereby the time derivative of magnetization maps to a monopole current [54]
- Measuring the monopole charge by an analog of the Wien effect [55]: that is, how the density of monopoles increases in a magnetic field which reduces the “ionization energy”, manifested in a reduction of the spin autocorrelation time as probed by muon spin relaxation [56].
- Thermodynamics...[33, 56, 57, 58]

It should be observed, that many of the experiments basically probe the existence of thermally excited pseudo-charge defects as could be found in any Coulomb phase
system; only a few of the experiments test the special “monopole” property of the defects in the spin ice case (namely their literal magnetostatic interaction).

4.2.1. Correlation length experiment A recent experiment [57] on spin ice at high magnetic fields was interpreted in terms of monopoles. The polarization is near saturation, so the only freedom is in dilute line-like excitations, of overall density proportional \(\delta P = P_{\text{max}} - P \). These are none other than the “world lines” of Sec. 7.4 and also are genuine “Dirac strings”; if the flux constraint is absolute, they never terminate. But in the presence of a small density \(n \) of defects, each world line connects a defect and an antidefect (and all defects are endpoints), the typical length being \(P/n \).

[The connecting-up is well-defined only to the extent that world lines don’t touch, which is true if \((\Delta P)^2/n \) is sufficiently small.] The numerical agreement between the diffraction width and simulation results is indirect evidence for the finiteness of the Dirac strings, and hence the presence of separated defects.

5. Dynamics

We could also make predictions for the dynamic fluctuations and response of the polarization field.

5.1. Accessibility of states under updates

As was pointed out (in Sec. 1.2), the natural update for a model with a flux is a loop update. [An example of such an update is shown later in Fig. 4(a.)] However, with luck, one can run a simulation considering just minimal updates, i.e. involving the shortest loops (one plaquette, in the example of Fig. 4(a), or a hexagon in the case that the parent lattice is a honeycomb or diamond lattice).

Now, in order to equilibrate a simulation, an update move must allow one to access every state with a given global flux, from every other state with the same flux, given enough steps. Minimal updates allow access in two-dimensional dimer models, but seem not to in the diamond-lattice dimer covering, so that non-local updates are needed. One method for this is a generalized “worm” update [61] (originally applied just to accelerate the dynamics in models for which minimal updates allow access). One creates a defect pair, allows the defects to diffuse till they re-annihilate, and then accepts or rejects the final configuration according to the usual Metropolis fashion.

This is the typical mechanism for updating in a real system, too. That is, even rather dilute thermally excited defects are essential “lubricants” facilitating relaxation.

5.2. Dynamics of defects

Topological defects, even when very dilute, may be crucial in the dynamic behavior for two reasons. First, the inherent dynamics of the Coulomb phase is presumably local, but a finite update may be insufficient to access all states in our ensemble. After all, as I have mentioned, the natural update follows a loop, and – given that the Coulomb phase has power-law correlations – one can’t rule out that the updating loops have a power-law distribution with a tail of long loops. But if a pair of defects is created, random-walk for a long time, and re-annihilate, this accomplishes the same effect as a long update loop. (If the trails of the defects never crossed – a big “if” – that loop would just be the joining of those trails.) The defect pair might be created by thermal
activation in a realistic dynamics, or artificially as a recipe to accelerate some Monte Carlo dynamics.

Defects matter for a second reason in cases, e.g. spin ice or water ice, where the model polarization is a physical polarization (magnetization or electric polarization) that couples to external fields: they control the relaxation of the polarization. Let’s consider spin ice for concreteness, and let $T > 0$, so there is some density $n(T)$ of thermally excited monopoles.

Whenever a monopole (defect) moves by Δr, it changes the system’s total polarization by $\Delta P_{\text{tot}} = Q \Delta r$. Firstly, this implies the relaxation rate of the total polarization is the monopole current,

$$ \frac{dP_{\text{tot}}}{dt} = J_{\text{mono}}. \quad (5.1) $$

Secondly, it implies the external (real) magnetic field B applies a force

$$ F_B = QB \quad (5.2) $$
on each monopole defect. So assuming a linear response with a mobility coefficient μ_{drift}, each defect has a drift velocity $\mu_{\text{drift}} QB$. Finally, the system’s total magnetization is μP_{tot}, so putting it all together, the magnetization density behaves as

$$ \frac{dM_{\text{tot}}}{dt} = n(T)\mu_{\text{drift}} QB. \quad (5.3) $$

(A stochastic term is omitted). This apparently explains [54] the temperature dependences of the relaxation times observed years ago by [60].

A slab of ideal spin ice, placed in a magnetic field, responds (at least in simulations) just like a slab of conductor placed in an electric field. After an initial current, surface charge layers form which nullify the field in the interior, and the current comes to a halt [54].

The non-equilibrium recombination dynamics of monopole defects with antidefects after a sudden quench is worked out in Ref. [59], who suggest its use in real experiments.

5.3. Wavevector (in)dependent dynamics

Imagine first that the dynamics takes us between states that all exactly obey the zero-divergence constraint on $P(r)$. Then the dynamics of P is diffusive and Standard dynamics would say

$$ \frac{\partial P_\perp(k)}{\partial t} = \Gamma(k) \frac{\delta F_{\text{tot}}}{\delta P_\perp(k)} + \zeta(k, t) \quad (5.4) $$

$$ = \Gamma(k)K P_\perp(k) + \zeta(k, t). \quad (5.5) $$

I wrote a kinetic coefficient $^\star \Gamma(k)$ to allow for different versions of the relaxational dynamics; $\zeta(k, t)$ is a Gaussian noise source with correlation function $2\Gamma(k)$, which satisfies detailed balance, and thus ensures that the steady state is the Boltzmann distribution implied by (3.5). Hence we get a relaxation time $\tau_0^{-1}(k) = \Gamma(k)K$.

The naive expectation [3] is that, since the dynamics conserves polarization, $\tau_0^{-1} \propto \Gamma(k) \propto |k|^2$, vanishing at small k. (That is the location of the static pinchpoint singularities; since the actual variables measured are generally related to P by a staggering, they get offset to other wavevectors K.) However, for a vector spin
model, explicit analytic calculation (with a spin-conserving dynamic extension of the large-\(n\) approximation and simulations (with realistic precessional dynamics) gave a \(k\)-independent relaxation [62], i.e. apparently \(\Gamma(k)\) \(\sim\) constant.

This is not the full story; at \(T > 0\), the \(n\) constraint is not fully satisfied, so there is a finite correlation length \(\kappa^{-1}\) (exponential in \(1/T\), for a discrete model, or \(\kappa(T)^2 \sim T\) in a vector spin model), as mentioned above [see Eq. (4.2)]. Ref. [62] found a second contribution to the relaxation rate, \(\tau_T(T)\), which represents a current of thermally excited monopoles (or the analogous excitations in a vector spin model [62]). The combined formula for the polarization correlations is [62]

\[
\langle P_\mu(k, t)P_\nu(-k, 0) \rangle \propto \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{|k|^2} \right)e^{-t/\tau_T} + \kappa^2 \frac{k_\mu k_\nu}{|k|^2(|k|^2 + \kappa^2)} e^{[1/\tau_{\text{no}}(k)+1/\tau_T]t}. \tag{5.6, 5.7}
\]

6. Quantum models: a quest for “artificial light”

It is natural to ask, can we have, not just an emergent magnetostatics or electrostatics, but an emergent electrodynamics with separate “electric” and “magnetic” fields satisfying Maxwell’s equations? Indeed, this can emerge in quantum versions of the models we discussed [11, 63, 64].

6.1. Set-up of quantum models

Typically, the Hilbert space consists of discrete configurations satisfying the same constraints we discussed before, allowing the definition of a “magnetic” field via the same coarse-graining developed in Sec. 3. Furthermore, the model has “flip” terms of amplitude \(t_{\text{ring}}\) which hop you from one basis state to another. These are the same kind of “flips” (constrained by the flux conservation) we found in the classical (Monte Carlo, or physical) dynamics (see Sec. 1.2 the flip must rearrange a closed loop.

In a quantum model it is particularly desirable the “flip” should look as simple as possible (at least, should be finite!) when written out in terms of spin or creation/annihilation operators. (Among other things, only the simpler cases are likely to be realized in experimental systems.) A “simple” flip means a “minimal update” which (in the quantum model) amounts some variety of “ring exchange”. That is, it switches the occupancies, or reverses the spins or arrows, along the shortest loops in the lattice. (These are six sites in the cases of the kagomé or pyrochlore site lattices).

A natural route to the needed flip terms is to let the Hilbert space admit local violations of the flux constraint, but to make the Hamiltonian strongly penalize them by a potential energy cost of order \(V\). The Hamiltonian also includes simpler flips of amplitude \(t_{\text{pair}}\) involving two sites (spin exchange or boson hopping). Then a good effective Hamiltonian (low energy theory) restricts the Hilbert space to the subset of configurations satisfying the flux constraint, but includes loop flip terms generated from perturbation theory [11, 64, 68]: e.g.,

\[
t_{\text{ring}} \propto \frac{t_{\text{pair}}}{V^2} \tag{6.1}
\]

for loops of length six).
6.2. Theory of the “Maxwell” phase

This theory, written in terms of discrete variables, is some kind of “compact $U(1)$ gauge theory”. Here $U(1)$ simply means there is one sort of “electric” charge. It is the electric flux which has the defining constraint I mentioned in Sec. 1, which implies a gauge freedom in the phases of the electric field operators. * Also, “compact” means the flipping term looks like $\cos(\Phi_B)$ where Φ_B plays the role of the magnetic flux, and thus the magnetic flux is only defined modulo 2π instead of taking arbitrarily large values. Now, let’s assume the Φ_B fluctuations are rather small. ⁵ Then events (“instantons”) in the quantum evolution in which Φ_B wraps around its period get suppressed, maybe so much that we may ignore them, in which case can imagine Φ_B being non-compact (taking unbounded values) as in the familiar electrodynamics.

The next step is usually a leap to a continuum theory, by substituting for the “magnetic” (flip) term the simplest analytic (i.e. quadratic) term with the correct symmetries, with a coefficient K_B (analogous to the magnetic permeability); also, a quadratic “electric” term is assumed as in the classical model. If all that is justified, it follows that we get emergent “artificial light” elementary excitations [64, 11] with dispersion

$$\hbar \omega(q) = \hbar c |q|$$ \hspace{1cm} (6.2)

where $\hbar c \propto \sqrt{K_B/K_E}$ is the analog of the speed of light. Although linear dispersing excitations are common enough in solid state (magnons in antiferromagnets, or phonons), these “emergent photons” are novel in that they are not Goldstone modes. I will call such a phase a “Maxwell” phase.

The structure factors of such a model do have singularities at the same pinch-points as the classical models, but the correlation behavior has different exponents. A short cut to the behavior (as in any other model that reduces to harmonic oscillators) is the virial theorem, which says the oscillators “potential” and “kinetic” energy expectations each get half the zero-point energy. Thus,

$$\frac{K_E}{2} \langle |\bar{E}(q)|^2 \rangle = 2(\hbar \omega(q)/4)$$ \hspace{1cm} (6.3)

(the 2 is for two polarizations). The equal-time mode expectations are thus (in place of the classical result (3.9))

$$S_E(q) \equiv \langle \bar{E}(q)_\alpha \bar{E}(q)_\beta \rangle \approx \frac{\hbar |q|}{\sqrt{K_E K_B}} \left(\delta_{\alpha\beta} - \hat{k}_\alpha \hat{k}_\beta \right)$$ \hspace{1cm} (6.4)

and correspondingly the correlations should decay as $1/r^4$ in the quantum case. (The structure factor as a function of (q, ω) is similar but proportional [64] to $|q|^2/(\omega^2 + c^2|q|^2)$ in place of the $|q|$ factor in (6.4).)

I somewhat mistrust the leap to the continuum theory, if justified only by the symmetries of the “flip” operator. Consider the following: given a classical model with a classical flip dynamics, one can always devise a quantum Hamiltonian whose ground state has the same probability distribution as the (Boltzmann) weights of the classical model, via the Rokhsar-Kivelson (RK) construction [65, 66, 67]. But

* There is not a uniform convention in the literature whether the variables are electric and their duals magnetic, or vice versa.

⁵ Since E and B operators are conjugate, like position and momentum of a harmonic oscillator, the uncertainty relation tells us the “magnetic” fluctuations can be small only when the “electric” fluctuations are large, as is the case in the sort of correlated-liquid/cooperative-paramagnet phase we’ve had in mind throughout this paper.
usually the classical system generally has relaxational dynamics, correspondingly [66] the quantum system has elementary excitations with \(\omega \sim |q|^2 \) dispersion; alternatively, if the classical relaxation time is constant (as in the model summarized in Sec. 5.3), the quantum excitations are gapped.

A second worry is that, as already noted (Sec. 1.2), a rule that flips only the smallest loops is quite possibly insufficient to access the whole Hilbert space.

6.3. Simulation tests for emergent electrodynamics

Two groups have verified the emergent “Maxwell phase” [68, 69]. Their models are dimer coverings of the diamond lattice (in the case of [68], an equivalent boson model, in which the flip term is generated as in (6.1).) The “smoking gun” for this state according to [68] is correlations linear in \(q \) like (6.4), while for [69] it is an energy depending as \(|E|^2 \) on the uniform flux density. Unfortunately, with quantum Monte Carlo it would be difficult to measure the corresponding dependences for the conjugate variable \(B \), which ought to behave the same as \(E \).

7. Phase transitions out of Coulomb phases

Now that we have (in the polarization field) something analogous to an order parameter, we are equipped at least to classify transitions out of a Coulomb phase into, say a long-range ordered phase. We might even be able to set up a field theory as the basis for some sort of renormalization group. But the constraints of the Coulomb phase necessarily mediate long-range interactions; as is long known [70] these can change the universality class of a transition, modifying the critical behavior to that characteristic of a higher spatial dimension.

Since the long-range ordered pattern is a particular configuration, it has a net polarization \(P_0 \), which can be used to classify the cases.

- **Zero-polarization:** \(P_0 = 0 \) is zero; the transition is a symmetry breaking into one of several symmetry-related states, all with \(P_0 = 0 \).
- **Intermediate polarization:** \(P_0 \neq 0 \) so there are several symmetry-related directions for \(P_0 \), but each corresponds to just one kind of ordered state.
- **Saturated polarization:** \(P_0 \neq 0 \), with a symmetry breaking as in the previous case, but with \(P_0 \) at the edge of the range of possible polarizations, so that there are no fluctuations whatsoever in the ordered state (so long as the constraint still holds)

Furthermore, such transitions might be driven either by interactions, or by external fields.

7.1. Dimer crystal transitions: zero polarization

The most elementary case is simulated dimer coverings of a cubic lattice, with an interaction that favors dimers on opposite sides of a square plaquette (in \(d = 2 \), on a square lattice, that would induce the same columnar pattern found in quantum dimer models.) The ground state of this Hamiltonian is a periodic pattern having \(P = 0 \) and with a six-fold degeneracy. (Three directions the dimers could line up in, and two choices of which layer to have dimers.)
The “Coulomb phase” in frustrated systems

Simulations of this model by Alet et al [71] showed a continuous transition (whereas Landau theory would predict a first-order transition, or an intermediate disordered phase). Furthermore, an emergent SO(3) symmetry was seen in polarization space (by plotting the distribution of polarizations), but only right at the transition [72]. These properties are suggestive of the recent paradigm of “deconfined” criticality [73, 74] whereby some phase transitions that must be first order according to Landau’s picture, instead are continuous, and the critical state possesses an emergent symmetry lacking in either of the adjacent phases. A flurry (still unresolved) ensued of theories [75, 76, 77, 78] and of followup simulations [78, 79].

Before these simulations, [80] had pondered the transition from the Coulomb phase to an ordered dimer pattern with zero polarization, concluding it is equivalent to the ordering of a superconductor when electromagnetic field fluctuations are taken into account, which is supposed to be weakly first order.

Ref. [78] simulated less isotropic versions of the interaction Hamiltonian. The basic picture of the transition is that, coming from the high-temperature (Coulomb gas) phase, all of these cases belong to the same universality class, an inverted XY transition. Those free energy terms anisotropic with respect to the polarization direction are irrelevant at the critical fixed point, hence the critical state has the SO(3) symmetry, but they are relevant at the attracting fixed point characterizing the ordered phase. Thus the transitions are less exotic than in the isotropic case, but in one case a surprising phase diagram was found: as temperature is raised, the dimer crystal melted into a paramagnetic phase, then at a higher temperature entered a Coulomb phase – re-entrant, in the sense that it has longer range correlations. (Notice that even if flux constraints are not enforced in the microstates, they may appear emergently.)

Ref. [79] elaborated the basic dimer model in a different way by including further neighbor interactions, and found a multicritical point (i.e. the transition switches from continuous to first order) not so far away from the basic model simulated by [71].

Chalker and Powell [76, 77] applied the world-line mapping (see Sec. 7.4) to this problem, and massaged the result into a field theory with two complex fields. The symmetries related to the specific lattice imply that the terms in this field theory are either SU(2) invariant, or else of order 8 (hence possibly irrelevant). This makes plausible the observed SO(3) (equivalently SU(2)) symmetry at the transition, which goes with the “noncompact CP^1” (NCCP^1) universality class.

7.2. Intermediate polarization transitions

Whenever \(P_0 \neq 0 \) (and is sufficient to label the symmetry-broken states), it should be possible to describe the transition just in terms of \(P(\mathbf{r}) \) and its derivatives. If \(P_0 \) were not saturated, the prescription of Landau theory should lead us more or less in the right direction: the free energy density \(f(P) \) retains the full symmetry of the lattice, is analytic in \(P \), and has global minima at the \(P_0 \) values. Furthermore, rather than compute the exact \(f(P) \), we can usually get away with Taylor expanding it to the lowest order that has minima in the right places. For example, for ordering into a state with \(P_0 \) in one of the six (100) directions, we might have

\[
f(P) = -\frac{1}{2} \alpha |P|^2 + \frac{1}{4} \beta |P|^4 - \nu (P_x^2 + P_y^2 + P_z^2) + \frac{1}{2} \gamma |\nabla P|^2
\]

(7.1)

When \(\alpha, \beta, \nu, \gamma \) are all positive, the first two terms in (7.1) define a minimum along the entire sphere \(|P|^2 = \alpha/\beta \); around that sphere, the third term is minimized when \(P \) points in any of the (100) directions. The gradient term puts a cost on the domain.
The “Coulomb phase” in frustrated systems

A wall between ordered domains that have chosen different ones of the six \(\mathbf{P}_0 \) directions. So far, this looks exactly like the Landau-Ginzburg-Wilson “action” used to formulate the \(\epsilon \)-expansion renormalization group for a 3-component ferromagnetic spin model with cubic anisotropy [81]. However, we are not done. If the flux constraint continues to hold through this transition, we must enforce \(\nabla \cdot \mathbf{P} = 0 \) in the continuum treatment. We saw in Sec. 3 that this constraint generates effective dipolar interactions between polarization fluctuations in different places, and such long-range interactions were shown long ago to change the critical behavior of spin models.

The case of nonzero, but unsaturated, polarizations has the fewest exotic features. It is realized by a Hamiltonian in which some bond directions are slightly strengthened, thereby selecting out a unique ground state (modulo spin rotation symmetry), so the system undergoes a Néel transition. As might be expected, it behaves like the ordering of a vector spin system with power-law interactions. In the vector-spin cases, this is slightly different from the related models studied in the 1970s [70], as the polarization field carries both spatial and spin component indices: the interaction is anisotropic (dipole-like) with respect to the former, but retains the rotation symmetry of the latter.

7.3. Saturated polarization case

This case has the further complication that, by the rules of our constraint, no fluctuations are possible at all on the ordered side of the transition. We thus get the asymmetric behavior called a “Kasteleyn transition” [82, 84, 83]. Approaching it from the ordered side, there are no critical divergences to signal the impending transition: in that sense, it looks like a first order transition. On the other hand, coming from the Coulomb phase side, fluctuations are allowed and in fact have critical divergences as one would expect from a continuous transition. Finally, states near to the ordered, saturated state can be expressed relative to it as a set of dilute string excitations (see Sec. 7.4) and that typically implies a relatively tractable behavior.

7.4. Mapping to \(d - 1 \) quantum problem: World line approach

Here I summarize a second analytic technique, for Coulomb phases (beyond plain continuum theory of the polarization field): mapping a configuration in \(d + 1 \) dimensions to the world-lines of a set of particles in \(d \) dimensions. Thus, one is taking advantage of the usual correspondence between the partition function of a \((d + 1) \)-dimensional problem in classical stat mech and the path integral of a \(d \)-dimensional quantum many-body problem. The conservation law of these quantum particles corresponds to the defining divergence condition of the Coulomb phase model.

The world-line mapping is ideal in the case of a transitions to a phase with saturated polarization, [83], since that is where the density of world-lines goes to zero, but was also applied to a zero-polarization case in Refs. [76, 77]. It has the disadvantage (compared to the polarization field theory) that it necessarily breaks the lattice symmetry by selecting one direction to be the (imaginary) time axis, along which the world-lines run. The set-up is detailed in Appendix Appendix A.

The Coulomb phase is the disordered phase of the world lines, which means that to every configuration found in the ensemble, you can find another configuration in which all the lines come out in the same place, except that two of them have got switched. Exactly as in the “entangled vortex liquid” phase, this signifies that the
The “Coulomb phase” in frustrated systems

bosons in the $2 + 1$ dimensional quantum model are in a Bose-condensed phase – i.e., an ordered (!) phase with a continuous symmetry-breaking labeled by one angle variable. Therefore it has gapless Goldstone modes, the correlations of which decay as power laws in space and time. Furthermore, after one works through the mapping of dimer occupations to fluxes and of those, in turn, to the boson density and current, those power laws are precisely the dipolar correlations expected for the fluxes.

8. Disorder

Coulomb phase ideas can be applied to disordered cases – provided that the disorder does not destroy the Coulomb phase nature of the state. If defects are very dilute, the basic phenomenology is that of the unchanged Coulomb phase between them, as discussed in earlier sections – in particular, the nonlocal spin response in Sec. 3.2.2. Similarly, disorder might create traps for pseudocharge defects, (Sec. 4), affecting their phenomenology much as impurity sites affect carriers in a compensated semiconductor. Here I address examples of disorder which determine the collective state of the system.

8.1. Bond disorder

One way to gently introduce disorder to a Coulomb phase is to weakly modulate the interactions in a nearest-neighbor antiferromagnet realization (say the pyrochlore lattice), so the bond strength has variance Δ^2 [85]. Standard replica techniques gave a mean-field spin glass transition temperature [85]

$$T_{c}^{MF} = \frac{1}{2} \Delta \left(\lambda_4 \hat{G}^2 \right)^{1/2}$$

(8.1)

where $\lambda_4 = 6$ is a coefficient derived from the adjacency matrix, and $\hat{G}^2 \equiv \sum_j G_{ij}^2$, where G_{ij} is the correlation between spins i and j. Where Coulomb-phase notions enter is just in the evaluation of \hat{G}^2. This has (thanks to our assumption of small Δ) approximately the same numerical value as the pure case, for which we know the asymptotic behavior (Sec. 3.2), and indeed (within the large-N approximation) the exact function [40].

Alternatively, one considers strong random modulation but in dilute places. This produces local pseudospin degrees of freedom, which have effective long-range interactions mediated by the polarization field, [85] as we knew from Sec. 3 and Sec. 4. Thus the problem maps to a dipolar magnet dilutely occupied by spins, also giving a spin glass phase, as known for several decades.

8.2. Depleted antiferromagnets

The “hyperkagome” antiferromagnetic lattice [87, 88] is a pyrochlore lattice with 1/4 of the magnetic sites removed, making very regular pattern of corner-sharing triangles. What if we dilute at random, but place the non-magnetic substitutions such that exactly one site gets removed from every tetrahedron [89]. This ensemble is equivalent to the dimer coverings of the diamond lattice (where each dimer corresponds to a removed site), and thus is highly plausible as an example of a lattice-gas realization (see Sec. 2). The “flux” can still be defined, and is still conserved, on such “randomly

††This is reminiscent of Villain’s pseudospins induced at wrong bonds, which had pseudo-dipolar interactions mediated by the Goldstone mode of an ordered antiferromagnet [86].
The “Coulomb phase” in frustrated systems

Figure 4. Loops in ice model and constrained disorder. (a) An ice-arrow configuration; outlined is an update loop (reversing all arrows gives another valid configuration). (b) The same configuration; highlighted (pink arrows) is an alternating loop (ice-arrows point in alternating directions) (c). A lattice gas of A and B atoms (red and green circles) placed so that every vertex is surrounded by exactly two of each species, and represented by the same ice-arrow configuration as (a). (Each red atom maps to an arrow from an even to the odd vertex, and oppositely for each green atom.) Loops connecting atoms of the same species form alternating loop. Banks [17] showed that for some plausible species-dependent couplings (in the three-dimensional analog), the spin directions alternate along each loop as shown.

deprecated lattices”. Hence, they still have Coulomb phases despite the disorder [89]. The disorder acts on the coarse-grained polarization field like a random anisotropy term with long-range dipolar-like correlations, since the randomness itself is a Coulomb phase ensemble [89].

8.3. Constrained disorder models: loop-based dilution

Besides the depleted lattices, there are other examples of the (nearly unstudied) class of correlated-disorder ensembles that I’ll call “constrained disorder”, meaning the frozen configurations come from some “Coulomb phase” ensemble. For example, it was proposed by [17] that in CsNiCrF₆ [16], A (=Cr) and B (=Ni) spins populate the pyrochlore such that every tetrahedron has two of each. As noted in Sec. 2, this realizes an ice model.

The spin-spin exchange constants are J_{AA}, J_{AB}, and J_{BB}, depending on the species at either end of a bond. In a realistic range of couplings, the A spins in each tetrahedron point along $+\mathbf{n}$ and $-\mathbf{n}$ while the B spins point along an independent direction $+\mathbf{n'}$ and $-\mathbf{n'}$. Hence, the lattice breaks up into disjoint loops of A or B spins; in each loop spin directions alternate, and each loop chooses a staggered direction independent of the others [Fig. 4(c)] Thus the disorder-averaged spin correlation C_{ij} is simply the connectedness correlation function – the probability that sites i and j are on the same loop. In simulations [17], $C_{ij} \propto 1/r_{ij}^a$ with $a \approx 1$.

Consider flux-loops, as mentioned in Sec. 1.2, and also the basis of world-lines in Sec. 7.4: flux runs in the same sense along the loop or line. One can make a one-to-one correspondence between configurations which have a flux-loop containing both sites \mathbf{r} and $\mathbf{r'}$, to configurations with a charge defect at \mathbf{r} and an antidefect at $\mathbf{r'}$. (Namely, one maps the former to the latter by reversing the flux along half the loop between \mathbf{r} and $\mathbf{r'}$. On the other hand, if one has a charge defect, it must be the endpoint of two such flux lines; and if the system has only one defect pair, the other endpoints must be at the second defect, so the map is invertible.) This idea – originating with [90] – was applied in two-dimensional height models to get
the connectedness correlation function [47, 46, 91], and the same idea will work in Coulomb phases. However, the loops in question here are of a different kind: they run alternately with and against the flux, they cannot be reversed, so the defect-pair trick is not applicable. It will be interesting to see how a simple power-law can emerge for the connectedness correlation function. The same kind of loops are formed by fermions in the wavefunctions envisaged by Fulde et al [19, 20].

9. Conclusion

When local constraints imply the existence of a conserved “flux” in some statistical model, this flux can be coarse-grained into a polarization field which is a comprehensive framework – not yet exhausted – to map out the model’s behaviors: long-range correlations, charge-like defects, dynamics, and disorder effects.

In the course of the review, I’ve outlined the associated calculational tools:

(1) Continuum theories, e.g. to model the analytic form of correlations in classical or quantum models;
(2) The large-n limit of n-component spin models, to evaluate correlations in particular lattices.
(3) “World lines” (or equivalently “Dirac strings”) near the limit of saturated polarization, e.g. the behavior of “spin ice” magnets in large fields of the appropriate orientations.

Acknowledgments

I acknowledge helpful conversations and communications with Kedar Damle, Arnab Sen, Claudio Castelnovo, Roderich Moessner, Simon Banks, Nic Shannon, Frank Pollmann, Simon Trebst, and especially John Chalker. This was supported by the NSF under grant DMR-0552461. I am grateful to Boston University for hospitality during the writing of this paper.

Appendix A. Set-up of world-line mapping

Here I present details of the world-line approach, applied to a variety of questions about Coulomb phases by Chalker and collaborators. The key idea is to map a configuration in $d + 1$ dimensions to the world-lines of a set of particles in d dimensions. Thus, one is taking advantage of the usual correspondence between the partition function of a $(d+1)$-dimensional problem.

For pedagogical purposes, my illustrations are from the $1 + 1$ dimensional cases, although (as noted already in Sec. 3.3) these are “height” models and thus have much more structure than the $2 + 1$ dimensional Coulomb phase models. Specifically in the world-line mapping, additional features in $1 + 1$ dimension are (i). if the model is exactly soluble, this is how one sets it up (e.g. for the Bethe ansatz) (ii). usually the world lines are not crossing, so they represent hard core bosons; in one dimension, one can re-interpret the particles (via a Jordan-Wigner transformation) as fermions, and the statistics naturally implements the hard core constraint. In $2 + 1$ dimensions, one is stuck with hardcore (thus, interacting) bosons. Since one is mainly after long-wavelength properties, the repulsive interactions are not a big concern: one coarse-
The “Coulomb phase” in frustrated systems

Figure A1. Mapping configurations of a flux model to world lines. Parts (a,b,c) illustrate the dimer-difference construction. (a) A typical dimer covering on the honeycomb lattice, with arrows giving the fluxes; single arrows are uncovered edges. (b) A reference dimer covering, having the maximum possible flux (in the = y direction). (c). The difference between the fluxes from (a) and (b) forms an array of non-intersecting lines that always move from top to bottom, and may thus be interpreted as world lines of a set of particles. Parts (d,e,f) show the uniform-flux construction on the square lattice: again, (d) is a typical dimer covering, (e) is the reference flux pattern [but unlike (b), it does not represent any dimer covering], and (f) is the difference, showing world lines. When we slice through every fourth layer of bonds [dotted lines in (f)], the lines are always paired in that layer, and we interpret every pair as a particle [filled circle] in a chain of sites. (In (c) and (f), all world lines are equivalent, but those which go with different particles are alternately colored red and green.)

grains beyond the scale of the boson spacing, and describes the boson fluid using just (quantum) hydrodynamics.

Our mapping must ensure that the world lines don’t turn back on themselves (so that the particles are conserved and don’t annihilate). This is done by letting the world lines be the difference between the actual configuration and a reference configuration having saturated polarization in some reference direction. If the original configuration had a nonzero mean flux along the reference direction, the resulting array of world lines has a different density from the reference; while if the original flux was transverse, the resulting array becomes tilted, representing a nonzero current in the lower dimensional quantum system.

Figure A1 illustrates two classes of this construction. Fig. A1(a,b,c) is the “dimer-difference” construction. Quite generally, if you take two dimer coverings of the same lattice and fill in edges wherever they differ, you get a set of unbroken lines or loops. If one of the coverings had saturated flux in a certain direction, these lines are directed along that same direction. This construction was used in [92].

I call the other construction a “uniform-flux construction”; this is implicit in the
The “Coulomb phase” in frustrated systems

set-up used by Powell and Chalker [76, 77]. They define it for dimers on a simple-cubic lattice, which is oriented with the reference being a (111) axis; Fig. A1(d,e,f) shows the square lattice analog. The diagonal orientation of the world lines has the virtue that coordinate-axis directions remain symmetry-equivalent; (Of course, one cannot manage that on other lattices, e.g. the honeycomb; and if you wished the (11) type axes to remain equivalent, you would pick the other orientation.) In the uniform-flux construction, the flux lines are not literally world-lines, since they can turn momentarily backwards in the odd layers; furthermore each “particle” has two flux lines which split apart. However, if one looks at the particles only in every fourth layer (dashed slices in Fig. A1(d), the lines always move forwards in time (downwards in the figure) and always rejoin in the same pairs. In the simple cubic lattice, the slices should be taken every six layers, and each particle splits into three flux lines, which won’t always rejoin but usually do. Rather than compute the exact transfer matrix eigenvalue $\lambda^b(q)$, Powell and Chalker just use a function with the same behavior near its maximum, since they are only interested in long-wavelength behaviors (and will get those by mapping the $d = 2 + 1$ problem to a field theory).

The “Coulomb phase” in frustrated systems

047205.

The “Coulomb phase” in frustrated systems